A study on compensation of incorrect recognition on HMM using multilayer perceptrons

신경망을 이용한 HMM의 오인식 보상에 관한 연구

  • Published : 2000.07.07

Abstract

본 논문은 HMM(Hidden Markov Model)을 이용하여 인식을 수행할 경우의 오류를 최소화 할 수 있는 후 처리 과정으로 신경망을 결합시켜 HMM 단독으로 사용하였을 때 보다 높은 인식률을 얻을 수 있는 HMM과 신경망의 하이브리드시스템을 제안한다. HMM을 이용하여 학습한 후 학습에 참여하지 않은 데이터를 인식하였을 때 오인식 데이터를 정인식으로 인식하도록 HMM의 출력으로 얻은 각 출력확률을 후 처리에 사용될 MLP(Multilayer Perceptrons)의 학습용으로 사용하여 MLP를 학습하여 HMM과 MLP을 결합한 하이브리드 모델을 만든다. 이와 같은 HMM과 신경망을 결합한 하이브리드 모델을 사용하여 단독 숫자음과 4연 숫자음 데이터에서 실험한 결과 HMM 단독으로 사용하였을 때 보다 각각 약 $4.5\%$, $1.3\%$의 인식률 향상이 있었다. 기존의 하이브리드 시스템이 갖는 많은 학습시간이 소요되는 문제점과 실시간 음성인식시스템을 구현할 때의 학습데이터의 부족으로 인한 인식률 저하를 해결할 수 있는 방법임을 확인할 수 있었다.

Keywords