The Edge Detector Using Wavelet Transform developed for Heavy Noised Images.

심한 잡음성 영상의 경계선 검출을 위한 웨이블릿 변환 이용 검출기 개발

  • 이혜성 (연세대학교 인지과학과) ;
  • 변혜란 (연세대학교 인지과학과 연세대학교 컴퓨터과학과) ;
  • 유지상 (광운대학교 전자공학과)
  • Published : 1998.10.01

Abstract

경계선 검출은 시각 인식 또는 기계 시각 인식의 과정에서 제일 먼저 수행되는 전처리 단계이다. 경계선 검출은 컴퓨터 시각 인식성능에 매우 중대한 요인으로 작용한다. 최근 MPEG-4에서 Model Based Coding 기법이 채택되면서, 경계선 검출 및 이를 이용한 컴퓨터 시각 인식의 중요성은 날로 커지고 있다. 한편, 잡음이 있는 영상의 경계선 검출 방법으로 여러 가지가 제시되었는데, 특히 잡음의 종류가 Additive White Gaussian인 경우에는 Canny Edge Detector가, Impulse인 경우에는 Dual Stack Filter를 적용한 방법이 각각 높은 성능으로 인정을 받고 있다. 그러나 Canny Edge Detector의 경우, Canny는 이론적인 Optimal Filter를 구하는 데에 성공하였지만 실제 적용에는, 이 Optimal Filter의 근사로써 Gauss함수의 1계 도함수를 사용하였다. 본 연구에서는 Gauss함수보다는 상당히 Optimal Filter와 가까운 Filter를 얻기 위하여 웨이블릿 변환을 사용한 Liao등의 방법과, 각기 다른 Scale에서의 웨이블릿 변환들이 가지는 잡음과의 관계를 고려한 새로운 경계선 검출방법을 개발하였다. 실험결과, 본 연구에서의 방법은 기존에 사용되던 Canny Edge Detector나 Stochastic Operator보다 뛰어난 성능을 보여주었다.

Keywords