Automatic Generation of Seed Individuals for Efficient Incremental Evolutionary Learning

효율적인 점증적 진화학습을 위한 씨앗개체의 자동생성

  • 송금범 (연세대학교 컴퓨터과학과) ;
  • 조성배 (연세대학교 컴퓨터과학과)
  • Published : 1999.10.01

Abstract

시뮬레이션 환경이나 실제 환경에서 이동 로봇 제어기를 진화 알고리즘으로 만들어내는 연구가 최근 활발하다. 이전의 연구에서는 기존의 단순한 진화 알고리즘이 환경에 제한된 제어기를 만들어 내는 문제점을 해결하기 위한 방법으로 셀룰라 오토마타 기반 신경망의 점증적 진화방법을 제시하였다. 점증적 진화 방법은 초기에 간단한 행동으로 해결할 수 있는 환경에 맞도록 제어기를 진화시킨 다음, 점차 복잡한 행동이 요구되는 환경에서 제어기를 점증적으로 진화시킨다. 실험결과, 점증적 진화의 방법이 좀 더 효율적으로 로봇을 진화시키고 환경의 변화에 보다 강한 것을 알 수 있었다. 그러나 이전연구에서의 점증적 진화 방법은 한 단계에서 진화가 끝난 후 다음 단계로 넘어갈 개체를 사람이 선택해야 하는 문제가 있었다. 본 논문에서는 이러한 문제점을 해결하기 위한 다양한 방법을 제시하고 실험을 통해 그 유용성을 보이고자 한다.

Keywords