NLP Formulation for the Topological Structural Optimization

구조체의 위상학적 최적화를 위한 비선형 프로그래밍

  • Published : 1996.04.01

Abstract

The focus of this study is on the problem of the design of structure of undetermined topology. This problem has been regarded as being the most challenging of structural optimization problems, because of the difficulty of allowing topology to change. Conventional approaches break down when element sizes approach to zero, due to stiffness matrix singularity. In this study, a novel nonlinear Programming formulation of the topology Problem is developed and examined. Its main feature is the ability to account for topology variation through zero element sizes. Stiffness matrix singularity is avoided by embedding the equilibrium equations as equality constraints in the optimization problem. Although the formulation is general, two dimensional plane elasticity examples are presented. The design problem is to find minimum weight of a plane structure of fixed geometry but variable topology, subject to constraints on stress and displacement. Variables are thicknesses of finite elements, and are permitted to assume zero sizes. The examples demonstrate that the formulation is effective for finding at least a locally minimal weight.

Keywords