Proceedings of the Korean Society for Noise and Vibration Engineering Conference (한국소음진동공학회:학술대회논문집)
- 1995.04a
- /
- Pages.147-152
- /
- 1995
- /
- 1598-2548(pISSN)
A Study on the Recursive Identification of Modal Parameters
회귀적 방법에 의한 모우드 변수 규명에 관한 연구
Abstract
실험에 의한 모우드 해석 방법들은 1980년대부터 활발히 연구되어 많은 새로운 방법들이 개발되어 발표되었다. 그러나 개발된 대부분의 방법들은 측정된 데이타를 일괄처리하는 밸치(또는 off-line) 방법들이다. 최근에는 시간에 따라서 변하는 구조물의 동특성을 규명하는 분야에 모우드 해석 방법이 응용되어 사용되고 있다. 이러한 응용분야에서는 모우드 변수들의 변화되는 값을 새로운 데이타가 샘플링 될 때마다 그 값들을 수정하면서 추정할 수 있는 회귀적인(recursive 또는 on-line) 방법을 사용하여야 한다. Davies와 Hammond[1]는 회귀적 선형 자승법(Recursive Least Squares : RLS)을 이용하여 모우드 변수를 구하고 이를 벧치방법인 Instrumental Variable 방법과 Fourier 방법의 결과와 비교하였다. 그러나, 그 결과에서 보여준것처럼 RLS 방법은 잡음 대 시호비가 낮을 때에만 모우드 변수 값들을 정확하게 추정할 수 있었다. Sundararajan과 Montgomrey[2]는 회귀적 선형 최소자승 격자필터(lattice filter)를 이용하여 구조물의 차수(order)와 고유진동형, 그리고 진폭을 결정한 후 이를 토대로 회귀적 gradient형태의 방정식 오차 규명 방법(equation-error identification algorithm)에 의하여 모우드 변수들을 추정하였다. 이 방법은 2차원 격자구조물의 모우드 변수 추정에 사용되었으며, 또한 적응모우드제어에도 성공적으로 이용되었다. 그러나, 이 방법도 잡음 대 신호비가 낮은 환경에서만 사용할 수 있다는 단점이 있다. 위에서 언급한 방법들은 모두 RLS 방법을 기초로 하여 개발되었으나, RLS 방법은 전형적인 결정적(deterministic)방법으로서 잡음이 섞인 데이타를 처리하기에는 부적절한 방법임이 널리 알려진 사실이다[3]. 최근에 Ben Mrad와 Fassois[4]는 신호에 잡음이 존재하여도 이를 잘 처리할 수 있는 확률적(stochastic) 방법을 개발하여 기존의 결정적 방법들과 그 결과를 비교하였다. 그러나, 개발된 방법은 응답 신호에 백색잡음(white noise)이 섞이는 특수한 경우에만 사용할 수 있게 만들어져서 이 방법의 실질적인 적용에는 어려움이 있다. 본 연구에서는 기존의 방법들의 단점을 극복할 수 있는 새로운 회귀적 모우드 변수 규명 방법을 개발하였다. 이는 Fassois와 Lee가 ARMAX모델의 계수를 효율적으로 추정하기 위하여 개발한 뱉치방법인 Suboptimum Maximum Likelihood 방법[5]를 기초로 하여 개발하였다. 개발된 방법의 장점은 응답 신호에 유색잡음이 존재하여도 모우드 변수들을 항상 정확하게 구할 수 있으며, 또한 알고리즘의 안정성이 보장된 것이다.
Keywords