Improvement of Semicontinuous Hiden Markov Models and One-Pass Algorithm for Recognition of Keywords in Korean Continuous Speech

한국어 연속음성중 키워드 인식을 위한 반연속 은닉 마코브 모델과 One-Pass 알고리즘의 개선방안

  • 최관선 (고려대 공과대학 산업공학과)
  • Published : 1994.06.01

Abstract

This paper presents the improvement of the SCHMM using discrete VQ and One-Pass algorithm for keywords recognition in Korean continuous speech. The SCHMM using discrete VQ is a simple model that is composed of a variable mixture gaussian probability density function with dynamic mixture number. One-Pass algorithm is improved such that recognition rates are enhanced by fathoming any undesirable semisyllable with the low likelihood and the high duration penalty, and computation time is reduced by testing only the frame which is dissimilar to the previously testd frame. In recognition experiments for speaker-dependent case, the improved One-Pass algorithm has shown recognition rates as high as 99.7% and has reduced compution time by about 30% compared with the currently abailable one-pass algorithm.

Keywords