Minimization of consumption energy for a manipulator with nonlinear friction in PPT motion

  • Izumi, T. (Depart. of Electrical and Electronic Eng., Yamaguchi University) ;
  • Takase, K. (Eletrotechnical Laboratory)
  • 발행 : 1994.10.01

초록

Robot engineering is developed mainly in the field of intelligibility such as a manipulation. Considering the popularization of robots in the future, however, a robot should be studied from a viewpoint of saving energy because a robot is a kind of machine with a energy conversion. This paper deals with minimizing an energy consumption of a manipulator which is driven in a point-to-point control method. When a manipulator carries a heavy payload toward gravitation or the links are de-accelerated for positioning, the motors at joints generate electric energy. Since this energy can be regenerated to the source by using a chopper, the energy consumption of a manipulator is only heat loss by an electric and a frictional resistance of the motors. The minimization of the sum of these losses is reduced Lo a two-points boundary-value problem of an non-linear differential equation. The solutions are obtained by the generalized Newton-Raphson method in this paper. The energy consumption due to the optimum angular velocity patterns of two joints of a two-links manipulator is compared with conventional velocity patterns such as quadratic and trapezoid.

키워드