Representing Fuzzy, Uncertain Evidences and Confidence Propagation for Rule-Based System

  • Published : 1993.10.01

Abstract

Representing knowledge uncertainty , aggregating evidence confidences , and propagation uncertainties are three key elements that effect the ability of a rule-based expert system to represent domains with uncertainty . Fuzzy set theory provide a good mathematical tool for representing the vagueness associated with a variable when , as the condition of a rule , it only partially corresponds to the input data. However, the aggregation of ANDed and Ored confidences is not as simple as the intersection and union operators defined for fuzzy set membership. There is, in fact, a certain degree of compensation that occurs when an expert aggregates confidences associated with compound evidence . Further, expert often consider individual evidences to be varying importance , or weight , in their support for a conclusion. This paper presents a flexible approach for evaluating evidence and conclusion confidences. Evidences may be represented as fuzzy or nonfuzzy variables with as associat d degree of certainty . different weight can also be associated degree of certainty. Different weights can also be assigned to the individual condition in determining the confidence of compound evidence . Conclusion confidence is calculated using a modified approach combining the evidence confidence and a rule strength. The techniques developed offer a flexible framework for representing knowledge and propagating uncertainties. This framework has the potention to reflect human aggregation of uncertain information more accurately than simple minimum and maximum operator do.

Keywords