인삼성분 D-O-ANa이 인슐린 분비에 미치는 영향 및 작용기전에 관한연구

FURTHER PURIFIED GINSENG EXTRACT FRACTION (D-O-ANA) FOR INSULIN RELEASE AND ITS MODE OF ACTION COMPARED WITH THE ISOLATED RESIDUAL COMPONENTS

  • KIMURA Masayasu (Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University) ;
  • SUZUKI Jun (Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University) ;
  • WAKI Isami (Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University) ;
  • KIMURA Ikuko (Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University) ;
  • TANAKA Osamu (Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine) ;
  • MATSU-URA Hiromichi (Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine)
  • 발행 : 1984.09.01

초록

인삼의 저혈당성 분획 (DPG-3-2)이 적출한 랑겔한스섬에서 인슐린 분비를 증가시킨다고 일전에 본 저자들이 발표하였다. 근래에 이와 같은 DPG-3-2 분획으로부터 사포닌, 뉴크레오사이드, 뉴크레오타이드, 아미노산, 당 등을 완전히 제거시켜 더욱 정제한 D-O-ANa 성분을 추출하였다. D-O-ANa 유발성 인슐린 분비효과를 DPG 3-2 분획과 그외 잔여성분과 비교 검토하였다. D-O-ANa는 글루코우즈 농도의 고저에 무관하게 인슐린 분비를 가장 강하게 촉진하였다. 특히 D-O-ANa는 제 2 차증 글루코운즈 유발성 인슐린 분비를 촉진하였다. DPG 3-2 분획은 당뇨병 쥐로부터 떼어낸 랑겔한스섬에서 세포외 체액의 칼슘이온이 증가됨에 따라($0.16{\~}6.25$mM) 글루코우즈 유발성 인슐린 분비를 더욱 현저히 증가시켰다. 칼슘이온 흡수와 인슐린분비의 상호관계가 뚜렷이 밝혀졌다. 이 관계는 single sucrose gap 방법에 의해 주의 적출 간 문맥에서 칼슘주파수가 증가되는 실험을 통해 증명되었다.

A further purified fraction (D-O-ANa) was obtained from DPG 3-2 fraction of Ginseng Radix by complete removal of saponins, nucleosides, nucleic acid bases, amino acids, and sugars. D-O-ANa - induced insulin release was investigated to compare with that of DPG 3-2 and other isolated components. Among the sub fractions of DPG 3-2, D-O-ANa exhibited the most potent release of insulin with or without high concentrations of glucose, and it particularly enhanced the second phase of glucose-induced insulin release. DGP 3-2 potentiated significantly the glucose-induced insulin release from the isolated islets of diabetic mice at increasing concentrations of extracellular calcium ions (0.16 - 2.5 mM). A definite relationship was found between calcium $(^{45}Ca)$ uptake and insulin release. Ginsenoside $(G)-Rb_1\;and\;G-Rg_1$ did not enhance the glucose-induced insulin release. The effect of ginseng saponins was blocked by glucose (16.7 mM), being distinctly different from the glucose-potentiated effect of DPG 3-2. The insulin release effect of $G-Rg_1$ was unaffected by the presence or absence of extracellular $Ca^{2+}$ and theophylline. Adenosine also increased insulin release from isolated islets, but had no effect on perfused rat pancreas. Arginine stimulated insulin release less evidently than D-O-ANa, though arginineand adenosine-induced glucagon releases were more remarkable. In conclusion, D-O-ANa appears to be a major fraction in insulin release activity of ginseng and its mode of action may be related to $Ca^{2+}$ ion uptake. This physiological mechanism was distinct from that of the abnormal release induced by ginseng saponins.

키워드