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ASYMPTOTIC STABILITY OF NON-AUTONOMOUS

UPPER TRIANGULAR SYSTEMS AND A

GENERALIZATION OF LEVINSON’S THEOREM

Min-Gi Lee*

Abstract. This article studies asymptotic stability of non-auto
nomous linear systems with time-dependent coefficient matrices
{A(t)}t∈R. The classical theorem of Levinson has been widely used
to science and engineering non-autonomous systems, but systems
with defective eigenvalues could not be covered because such a fam-
ily does not allow continuous diagonalization. We study systems
where the family allows to have upper triangulation and to have
defective eigenvalues. In addition to the wider applicability, work-
ing with upper triangular matrices in place of Jordan form matrices
offers more flexibility. We interpret our and earlier works includ-
ing Levinson’s theorem from the perspective of invariant manifold
theory.

1. Introduction

This article is devoted to the study of asymptotic stability for

(1.1) x′(t) = A(t)x(t),

with x(t) ∈ RN , A(t) ∈ RN×N for each t ∈ R. In particular, we study
when A(t) = U(t) + E(t) for U(t) upper triangular and E(t) suitably
small.

Our theorem (Theorem 3.2) generalizes the classical Levinson’s the-
orem [9], which has been widely used to study asymptotic stability of
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non-autonomous systems. Levinson’s theorem applies to a class of prob-
lems with coefficient suitably diagonalizable and time-dependent. The
theorem can be found in many places [2, 4, 8], and for the readers conve-
nience we include the Levinson theorem in the Appendix. The theorem
has been applied to tremendously many science and engineering non-
autonomous systems.

To illustrate our motivation for generalization, consider the following
simple example,

(1.2)

y1(t)
y2(t)
y3(t)

′ =
−1 + 1

t 1 0
0 −1− 1

t 0
0 0 −2

y1(t)
y2(t)
y3(t)


and let U(t) :=

−1 + 1
t 1 0

0 −1− 1
t 0

0 0 −2

. By integrating the system,

we see that the trivial solution is asymptotically stable. One is asked if
this stability can be persistently continued under suitable perturbations.
Consider

x′(t) = U(t)x(t) + E(t)x(t)

with E(t) a perturbation whose smallness will be stated in the sequel. For
this example, the three eigenvalues of U(t) are distinct for every finite t,
hence U(t) is (continuously) diagonalizable for every finite t. However,
It fails to be so in the limit t → ∞. Because of this failure at infinity,
Levinson’s theorem for this case is an empty statement; i.e., no result
regarding asymptotic stability is provided by the theorem. As a matter
of fact, the trivial solution is asymptotically stable with perturbations
satisfying the smallness conditions for Levinson’s theorem. Thus, there
are grounds to generalize the theorem hypotheses to provide the same
conclusions. In particular, to use upper triangular factorization in place
of diagonalization is our main concern, allowing defective eigenvalues.

A few previous studies have considered this approach for systems
with defective eigenvalues, appealing to block diagonalization. Alternate
systems with a single Jordan block have been considered [7] and sub-
sequently extended to systems comprising several Jordan blocks [6, 2].
Systems with multiple Jordan blocks have also been considered under
weak dichotomy assumptions [3, 1]. Section 4 discusses how these pre-
vious studies relate to the current work, and we provide the invariant
subspace point of view on those results.

This paper completes the following theorem by the author in [8, The-
orem 1]. Its tweaked version as well as its proof is included in Appendix.
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The notations |x(t)|θ and ‖ ·‖ in the statement, the weighted length and
the matrix norm respectively, are defined in Section 2.4.

Theorem ([8]). Suppose that U(t) = diag(U0(t), U1(t)) with U0(t)
and U1(t) upper triangular and of dimensions N0 × N0 and N1 × N1

respectively. Let N = N0 +N1. We make the following assumptions.

1.
∫∞
a0
‖E(t)‖ dt <∞ for some a0.

2. There is a real-valued function θ and constants δ > 0 and A ∈ R
such that
(a) for any t2 ≥ t1 and any λ0,i(t) i = 1, · · · , N0 of eigenvalues of

U0(t)∫ t2

t1

Re λ0,i(t)− θ(t) dt ≤ A− (N0 − 1 + δ) log(1 + t2 − t1),

(b) and for any t2 ≥ t1 and any λ1,i(t) i = 1, · · · , N1 of eigenvalues
of U1(t)∫ t2

t1

θ(t)−Re λ1,i(t) dt ≤ A− (N1 − 1 + δ) log(1 + t2 − t1).

Then there is a constant a and an N0-dimensional subspace E0 of RN
such that x(a) ∈ E0 implies that lim

t→∞
|x(t)|θ = 0.

In that exposition, a system with two blocks U(t) = diag
(
U0(t), U1(t)

)
was considered, with spectral gap between them. We showed only the
stability result, i.e., the persistent existence of one part with smaller
eigenvalue (in real parts) against the other part, whereas Levinson’s
theorem states the persistent existence of an orbit with intermediate
eigenvalue; Levinson’s theorem proof resembles that for center manifold
theory, rather than stable manifold theory. Our objective is to complete
the approach [8, Theorem 1], considering block diagonal systems with a
block that spectrally intervenes.

The remainder of this paper is organized as follows. Section 2 pro-
vides some key features for non-autonomous system asymptotic stability
problems (readers already familiar with those aspects may prefer to go
directly to Section 3). Section 3 presents the Theorem 3.2, the main out-
come from the paper. Section 4 presents the invariant manifold point
of view on this problem to clarify our aim to do and how this relates to
earlier work.
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2. Preliminaries

This section details our notations and introduce useful concepts from
ordinary differential equation theories required to state the particular
problem considered. Readers familiar with those basic notions may pre-
fer to go directly to Section 3. Much of the detail in this section was
from [8].

2.1. Key observations on asymptotic stability of
non-autonomous systems

We use the following example from [10] to illustrate relevance of
studying asymptotic stability of non-autonomous systems,(

x
y

)′
=

{(
−1

4 1
−1 −1

4

)
+

3

4

(
cos 2t sin 2t
sin 2t − cos 2t

)}(
x
y

)
.

Although the time-dependent coefficient matrix has eigenvalues−1
4±
√

7
4 i

for all t, and hence the real part is always strictly negative,

(
− cos t
sin t

)
exp(t/2) solves the equation. Thus, there is some deficiency in deter-
mining growth behavior from spectral information alone.

Another obvious but important observation is that the growth rate
gap, derived from the spectral gap, is finer than that for constant coef-
ficient systems. This can be illustrated by comparing systems(

x1

y1

)′
=

(
a
t 0

0 b
t

)(
x1

y1

)
, and

(
x2

y2

)′
=

(
a 0
0 b

)(
x2

y2

)
, a 6= b,

where the rate gap between independent solutions is ta−b and e(a−b)t,
respectively. Consequently, adding perturbations of size O(1

t ) terms as
t→∞ does spoil non-autonomous system asymptotic behavior. Levin-
son’s theorem states that such a polynomial growth gap is kept under
perturbations of integrable size.

2.2. Fundamental matrices

From the Picard-Lindelöf Theorem, a linear system has a unique
solution for |t − t0| ≤ ` with ` = min(a, b/M), where a, b, and M are
such that in the domain |t−t0| ≤ a and |x−x0| ≤ b, f(t, x) is continuous
in t and is uniformly Lipschitz in y and |f(t, x)| is bounded by M .
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For (1.1), we require
(A0)

1. Entries {Aij(t)}t∈R, i, j = 1, · · · , N are continuous at all t ∈ R.

2. |Aij(t)| is uniformly bounded by a constant K > 0.

We will call this assumption (A0), and hence from the Picard-Lindelöf
theorem the solution extends to all R uniquely (one could have consid-
ered a smooth cut-off if necessary).

Therefore, for any two numbers t and τ it makes senses to consider the
solution matrix Φ(t, τ), which maps x(τ) to x(t) and the corresponding
family {Φ(t, τ)}t,τ∈R. The solution matrices for an autonomous system
may be expressed as Φ(t− τ), but they explicitly depend on t and τ for
a non-autonomous system.

We have that Φ(t, t) = 1 for all t and

Φ(a, b)Φ(b, c) = Φ(a, c), ∀a, b, c.
In particular, Φ(a, b) is always invertible with inverse Φ(b, a).

2.3. Operations on block diagonal matrices

Let N1, N2, · · · , Nk be fixed positive integers such that
k∑
1

Nα = N .

Consider a collection C of all block diagonal N × N matrices of the
form U = diag(B1, B2, · · · , Bk), with blocks of dimensions Nα × Nα.
C is closed under the matrix multiplication. We find that for U =
diag(B1, B2, · · · , Bk) ∈ C and W = diag(C1, C2, · · · , Ck) ∈ C, UW =
diag(B1C1, B2C2, · · · , BkCk) ∈ C.

Let Pα = diag(0, · · · ,0,1Nα ,0, · · · ,0) whose only nontrivial block is
at the α-th site that is the Nα-dimensional identity matrix; if x ∈ RN ,
xα refers to the N -dimensional vector Pαx; and if U ∈ C, Uα refers to
the N ×N matrix PαU . It is directly verified for U,W ∈ C that

Pα(UW ) = (PαU)(PαW ), Pα(Ux) = (PαU)(Pαx)

and it follows that Pα(U1U2 · · ·Ujx) = U1αU2α · · ·Ujαxα.

2.4. Notation

For a vector x ∈ RN , |x| := max
i=1,··· ,N

|xi|. If A is a N × N matrix,

‖A‖ denotes the operator norm with respect to the vector norm, i.e.,

‖A‖ := max
|x|6=0

|Ax|
|x|

. If x(t) is an orbit, then the primary norm is the sup

norm ‖x‖L∞ . It is convenient to use the weighted norm to compensate
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the growth appropriately. For a given real-valued function θ with a fixed
constant a,

‖x‖L∞
θ ([c,d]) := sup

t∈[c,d]

∣∣∣∣x(t) exp

(
−
∫ t

a
θ(η)dη

)∣∣∣∣
or ‖x‖θ for shortly if there is no confusion about the domain. |x(t)|θ :=∣∣∣x(t) exp

(
−
∫ t
a θ(η)dη

)∣∣∣ is the weighted length at time t.

For a family of N ×N upper triangular matrices {U(t)}t∈R, let λi(t),
i = 1, · · · , N be the diagonal entries of U(t), which are the eigenvalues of

U(t). We also define λ(t) , max
i=1,··· ,N

Reλi(t) and λ(t) , min
i=1,··· ,N

Reλi(t).

For a block family {Uα(t)}t∈R, λα,i(t), λα(t), and λα(t) are similarly
defined.

3. Main Results

Suppose {U(t)}t∈R is a family of upper triangular matrices satisfying
(A0). In this section, y solves the system

(3.1) y′(t) = U(t)y(t),

which we call the upper triangular system and x solves the perturbed
system

(3.2) x′(t) = U(t)x(t) + E(t)x(t).

We denote the family of solution matrices for (3.1) as {Φ(t, τ)}t,τ∈R. To
study asymptotic stability for (3.2), we need to know that for (3.1), or
estimates on ‖Φ(t, τ)‖. These estimates were calculated previously in
terms of spectral information [8] and we quote the result below.

Proposition 3.1 ([8]). Let {U(t)}t∈R be a given family of upper
triangular matrices in (3.1) satisfying (A0) and {Φ(t, τ)}t,τ∈R be the
corresponding fundamental matrices. Then there is a constant CN,K > 0

such that for any a ≤ b and any vector V ∈ RN ,
(3.3)

e
∫ b
a λ(η)dη

CN,K(1 + b− a)N−1
|V | ≤ |Φ(b, a)V | ≤ CN,K(1 + b− a)N−1e

∫ b
a λ(η)dη|V |,

where the constant CN,K depends only on N and K.

Now, we consider asymptotic stability for the perturbed system (3.2).
Let us expose an invariant subspace point of view. Let U(t) = diag

(
U0(t),

U1(t)
)

with two upper triangular blocks, and split the phase space into
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RN = E0 ⊕ E1 for invariant subspaces E0 and E1 corresponding to the
respective blocks. The following treatment is helpful. We add dimension
by one to the phase space by appending the dummy variable t (t′ = 1 is
appended to the system). The fixed point 0 of the system extends to the
invariant line M := {t-axis}, and the asymptotic stability is about the
invariant line M . From Proposition 3.1, the range of growth rates in Ej ,
j = 1, 2 can be estimated by their respective eigenvalues. If two ranges
have sufficient gap as t → ∞, then segregation of the slower subspace
persists under perturbations (see [8, Theorem 1]).

As discussed in [8], the result was only the first half of what would be
a parallel statement to Levinson’s theorem: Consider a diagonal system
with eigenvalues λj(t), j = 1, · · · , N in ascending order. Select a λk(t)
that is intermediate. For a diagonal system, the splitting is RN = E1 ⊕
E2 ⊕ · · · ⊕ EN of one dimensional invariant subspaces Ej := Span ej ,
j = 1, · · · , N of coordinate basis. Levinson’s theorem can single out
the Ek that spectrally intervenes. Replacing a diagonal matrix by a
block diagonal matrix and the one dimensional Ej by those subspaces
corresponding to blocks, the result from [8, Theorem 1] corresponds to
a persistent segregation Es := E1 ⊕ E2 ⊕ · · · ⊕ Ek as a whole. Thus,
Theorem 3.2 complements the remaining half of the persistence theory.
Analogously to Levinson’s theorem, we can single out Ek out of Es.

Theorem 3.2. Let U(t) = diag(U0(t), U1(t), · · · , Um(t)) and for α =
1, · · · ,m Uα(t) is upper triangular with dimension Nα × Nα. Let N =
m∑
α=1

Nα. We make the following assumptions

1.
∫∞
a0
‖E(t)‖ dt <∞ for some a0.

2. There are real-valued functions θ and θ and constants δ > 0 and
A ∈ R by which the followings hold.
(a) {1, · · · ,m} = J0∪J1∪J2. J0, J1, J2 are mutually disjoint and

J1 is non-empty.
(b) α ∈ J0 implies that for any t2 ≥ t1 and any i, i = 1, · · · , Nα

∫ t2

t1

Re λα,i(t)− θ(t) dt ≤ A− (Nα − 1 + δ) log(1 + t2 − t1).
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(c) α ∈ J1 implies that for any t2 ≥ t1 and any i, i = 1, · · · , Nα∫ t2

t1

Re λα,i(t)− θ(t) dt ≤ A− (Nα − 1 + δ) log(1 + t2 − t1),∫ t2

t1

θ(t)−Re λα,i(t) dt ≤ A− (Nα − 1 + δ) log(1 + t2 − t1).

(d) α ∈ J2 implies that for any t2 ≥ t1 and any i, i = 1, · · · , Nα∫ t2

t1

θ(t)−Re λα,i(t) dt ≤ A− (Nα − 1 + δ) log(1 + t2 − t1).

Let N1 =
∑
J1

Nα. Then there is a constant a and an N1-dimensional

subspace E of RN such that x(a) ∈ E implies lim
t→∞
|x(t)|θ = 0 and

x(a) ∈ E − {0} implies lim sup
t→∞

|x(t)|θ =∞.

Proof. We first show that the assumptions imply estimates on fun-
damental matrices Φα = PαΦ for α = 1, · · · ,m, that are also block
diagonal.

1. For each α ∈ J0 and s ≥ τ from Proposition 3.1 and our assump-
tions.∣∣∣Φα(s, τ)e−

∫ s
τ θ(η) dηy(τ)

∣∣∣
≤ C1(1 + s− τ)Nα−1 exp

(∫ s

τ
λα(η)− θ(η) dη

)
|y(τ)|

≤ C2(1 + s− τ)−δ|y(τ)|(3.4)

and for each α ∈ J1 ∪ J2 and s ≤ τ ,∣∣∣Φα(s, τ)e
∫ τ
s θ(η) dηy(τ)

∣∣∣
≤ C3(1 + τ − s)Nα−1 exp

(∫ τ

s
−λα(η) + θ(η) dη

)
|y(τ)|

≤ C4(1 + τ − s)−δ|y(τ)|.(3.5)

2. For each α ∈ J0 ∪ J1 and s ≥ τ ,∣∣∣Φα(s, τ)e−
∫ s
τ θ(η) dηy(τ)

∣∣∣
≤ C5(1 + s− τ)Nα−1 exp

(∫ s

τ
λα(η)− θ(η) dη

)
|y(τ)|

≤ C6(1 + s− τ)−δ|y(τ)|(3.6)
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and for each α ∈ J2 and s ≤ τ ,∣∣∣Φα(s, τ)e
∫ τ
s θ(η) dηy(τ)

∣∣∣
≤ C7(1 + τ − s)Nα−1 exp

(∫ τ

s
−λα(η) + θ(η) dη

)
|y(τ)|

≤ C8(1 + τ − s)−δ|y(τ)|.(3.7)

We set Ψj(t, τ) :=
∑
α∈Jj

Φα(t, τ), Qj :=
∑
α∈Jj

Pα for j = 0, 1, 2, and C :=

maxk Ck.

Consider a permutation matrixR such thatRU(t) = diag(B0(t), B1(t)),

where B0(t) = diag
(
{Uα}α∈J0∪J1

)
and B1(t) = diag

(
{Uα}α∈J2

)
. From

Theorem A.1 with estimates (3.6)-(3.7), we obtain existence of a con-
stant a ≥ a0 and (N0+N1)-dimensional subspace Es such that x(a) ∈ Es
implies |x(t)|θ → 0 as t→∞. More specifically, we point out followings.

1. Each of orbit x(t) is a solution of integral equation

x(t) = y(t)+

∫ t

a
(Ψ0(t, τ)+Ψ1(t, τ))E(τ)x(τ) dτ−

∫ ∞
t

Ψ2(t, τ)E(τ)x(τ) dτ,

where y(t) = (Ψ0(t, a) + Ψ1(t, a))y(a) with y(a) ∈ (Q0 +Q1)RN .
2. Technically the constant a has been chosen so that C

∫∞
a ‖E(τ)‖ dτ <

1
2 .

3. The map y(a) 7→ x(a) from (Q0+Q1)RN to RN is a linear injection.

N1-dimensional subspace E of Es corresponds to that with y(a) ∈
Q1RN . In the below yj(t) = Qjy(t) and xj(t) = Qjx(t) for j = 0, 1, 2.
Every such orbit x(t) solves
(3.8)

x0(t) =

∫ t

a
Ψ0(t, τ)Q0

(
E(τ)x(τ)

)
dτ,

x1(t) = y1(t) +

∫ t

a
Ψ1(t, τ)Q1

(
E(τ)x(τ)

)
dτ, y1(t) = Ψ1(t, a)y1(a),

x2(t) = −
∫ ∞
t

Ψ2(t, τ)Q2

(
E(τ)x(τ)

)
dτ

with a y1(a) ∈ Q1RN .

We claim that x(a) ∈ E −{0} implies that |x(t)|θ has a lower bound
away from 0 for all time t ≥ a. Pick any t̄ ≥ a then for any s ∈ [a, t̄],
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x(s) also solves the following integral equations.

(3.9)



x0(s) =

∫ s

a
Ψ0(s, τ)Q0

(
E(τ)x(τ)

)
dτ,

x1(s) = Ψ1(s, t̄)x1(t̄)−
∫ t̄

s
Ψ1(s, τ)Q1

(
E(τ)x(τ)

)
dτ,

x2(s) = Ψ2(s, t̄)x2(t̄)−
∫ t̄

s
Ψ2(s, τ)Q2

(
E(τ)x(τ)

)
dτ.

To obtain (3.9)2, we multiply (3.8)2 by Ψ1(s, t) and substitute Ψ1(s, t)y1(t) =
y1(s) = x1(s) −

∫ s
a Ψ1(s, τ)E(τ)x(τ) dτ . To obtain equation (3.9)3, we

multiply (3.8)2 by Ψ2(s, t) then

Ψ2(s, t)x2(t) = −
∫ ∞
t

Ψ2(s, τ)Q2

(
E(τ)x(τ)

)
dτ

= −
∫ ∞
s

Ψ2(s, τ)Q2

(
E(τ)x(τ)

)
dτ +

∫ t

s
Ψ2(s, τ)Q2

(
E(τ)x(τ)

)
dτ

= x2(s) +

∫ t

s
Ψ2(s, τ)Q2

(
E(τ)x(τ)

)
dτ.

Define w1(s) := Ψ1(s, t̄)x1(t̄), w2(s) := Ψ2(s, t̄)x2(t̄), and w(s) :=

w1(s) + w2(s). Multiplying both sides of (3.9) by e
∫ s
a −θ(η) dη,

(3.10)

x0(s)e
∫ s
a −θ(η) dη =

∫ s

a

(
Ψ0(s, τ)e

∫ s
τ −θ(η) dη

)
Q0

(
E(τ)x(τ)e

∫ τ
a −θ(η) dη

)
dτ,

x1(s)e
∫ s
a −θ(η) dη = w1(s)e

∫ s
a −θ(η) dη

−
∫ t̄

s

(
Ψ1(s, τ)e

∫ τ
s θ(η) dη

)
Q1

(
E(τ)x(τ)e

∫ τ
a −θ(η) dη

)
dτ,

x2(s)e
∫ s
a −θ(η) dη = w2(s)e

∫ s
a −θ(η) dη

−
∫ t̄

s

(
Ψ2(s, τ)e

∫ τ
s θ(η) dη

)
Q2

(
E(τ)x(τ)e

∫ τ
a −θ(η) dη

)
dτ.

Let ‖ ·‖θ = ‖ ·‖L∞
θ ([a,t̄]) in the below. From estimates (3.4)-(3.5) we have∫ s

a

(
Ψ0(s, τ)e

∫ s
τ −θ(η) dη

)
Q0

(
E(τ)x(τ)e

∫ τ
a −θ(η) dη

)
dτ

≤
∫ t̄

a
‖Ψ0(s, τ)e

∫ s
τ −θ(η) dη‖ ‖E(τ)‖ ‖x‖θ dτ ≤

1

2
‖x‖θ
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and for j = 1, 2∫ t̄

s

(
Ψj(s, τ)e

∫ τ
s θ(η) dη

)
Q1

(
E(τ)x(τ)e

∫ τ
a −θ(η) dη

)
dτ,

≤
∫ t̄

a
‖Ψj(s, τ)e

∫ τ
s θ(η) dη‖ ‖E(τ)‖ ‖x‖θ dτ ≤

1

2
‖x‖θ

and hence from (3.10)

|x(s)− w(s)|θ ≤
1

2
‖x‖θ and thus ‖x‖θ ≤ 2‖w‖θ.

From (3.5),

‖w‖θ = sup
a≤s≤t̄

∣∣∣∣(Ψ1(s, t̄)w1(t̄) + Ψ2(s, t̄)w2(t̄)
)

exp

(
−
∫ s

a
θ(η)dη

)∣∣∣∣
≤ C|w(t̄)|θ = C|x1(t̄) + x2(t̄)|θ.

Therefore, using |x1(s) + x2(s)|θ ≤ |x(s)|θ ≤ ‖x‖θ, for any a ≤ s ≤ t̄

(2C)−1|x1(s) + x2(s)|θ ≤ |x1(t̄) + x2(t̄)|θ.
In particular, it holds that

|y1(a)| = |y1(a)|θ = |x1(a)|θ ≤ |x1(a) + x2(a)|θ
and thus

(3.11) m := (2C)−1|y1(a)| ≤ |x1(t̄) + x2(t̄)|θ,
and C is not dependent on t̄. This inequality holds for every t̄ ≥ a.
The claim follows from observations that x(a) ∈ E − {0} ⇔ y(a) ∈
Q1RN − {0}

)
and x1(a) = y1(a).

We finally claim that x(a) ∈ E−{0} implies that lim sup
t→∞

|x(t)|θ =∞.

Suppose not. Then ‖x(t)‖L∞
θ [ā,∞) is bounded for some ā. By taking ā

larger enough if necessary we can make for j = 1, 2 and any s ≥ ā∫ ∞
s

∣∣∣(Ψj(s, τ)e
∫ τ
s θ(η) dη

)
Qj(E(τ)x(τ)e

∫ τ
a −θ(η) dη)

∣∣∣ dτ ≤ m

2
.

Using this in the second and the third equations of (3.10), by triangular
inequality

|w1(s) + w2(s)|θ ≥ |x1(s) + x2(s)|θ −
m

2
≥ m

2

and from (3.5), |w1(s) +w2(s)|θ ≤ C(1 + t− s)−δ|x1(t) + x2(t)|θ for any
t ≥ s ≥ ā. Therefore

m

2C
(1 + t− s)δ ≤ |x1(t) + x2(t)|θ for any t ≥ s ≥ ā.
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As ‖x(t)‖L∞
θ [ā,∞) is bounded, this only can hold if m = 0 which is a

contradiction.

4. Discussion

Working with upper triangular matrices offer more flexibility in ap-
plications, because not all families of matrices allow continuous Jordan
factorization, and even if all the blocks do, transforming the matrix to
Jordan form may be unnecessary. Returning to the example in Section
1, taking the 3× 3 matrix as a whole is sufficient if we are only to show
the stability of the trivial solution. Another possibility is that we may
only be interested in one block and not the other, hence we have no need
to factorize the latter fine.

The following exposition from a point of view of invariant manifold
theory on Levinson’s theorem is useful. Levinson’s theorem applies to
a system x′(t) = Λ(t)x(t) for Λ(t) diagonal with distinct eigenvalues
{λj(t)}nj=1. Let ej be the coordinate basis and < q1, · · · ,qk > denote
the vector space spanned by q1, · · · ,qk. For such a diagonal system,
each < ej > is one dimensional invariant subspace and

RN =< e1 > ⊕ < e2 > ⊕ · · ·⊕ < eN >

is an invariant splitting of the phase space. Putting t′ = 1 as a dummy
equation extends the fixed point 0 of the system to an invariant line
M := {t-axis} of the extended system. The splitting becomes that of a
tangent bundle along M . With this framework, Levinson’s theorem can
be viewed as the persistence theorem of the splitting.

Let us consider a system x′(t) = J(t)x(t) for a single N ×N Jordan
block J(t), where we first suppose that the shared eigenvalue λ(t) has
geometric multiplicity 1. Then the invariant subspace structure for the
system is

< e1 > ↪→ < e1 > ⊕ < e2 > ↪→ · · · ↪→ < e1 > ⊕ · · ·⊕ < eN > .

The coordinate basis e1 is the only eigenvector of J(t) and ej is an eigen-

vector of
(
J(t)−λ(t)

)j
with

(
J(t)−λ(t)

)
ej ∈< e1 > ⊕ · · ·⊕ < ej−1 >.

A natural question is to find the sufficient smallness conditions on per-
turbations to retain this cascading invariant structure. This system has
no spectral gap, since the eigenvalue is shared, which suggests this prob-
lem is essentially of a single Jordan block. Jordan system fundamental
matrices are explicit, i.e., we know that the orbits in Ej can at most grow
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at rate tj−1e
∫ t
a λ(η) dη. [5] and [7] characterized the sufficiency conditions

(Equation (6.5) in [2, p.210]) for smallness of perturbation.

Now let J(t) be block diagonal with several Jordan blocks. Its hierar-
chy of invariant subspaces is clear following the previous discussion. Let
Eαj be the j-th cascaded subspace of the α-th block. Now it makes senses
to take the spectral gaps between blocks into account, as well as the per-
turbation sizes. We see that the underlying theory will be combinatorial.
The most complete picture is to keep all those structures persistent, and
the problem of finding sufficient conditions has been studied previously
[2, Theorem 6.6, Equation (6.29)]. The condition is a combination of
spectral gap and perturbation smallness condition. [2] used a different
approach, confirming the existence of N independent orbits.

From the discussion, it is seen that the multiple Jordan blocks prob-
lem consists of two independent problems as follows.

1. Problem on a single Jordan block for internal cascaded invariant
subspaces Ej .

2. Problem on a block diagonal matrix for block-wise invariant sub-
spaces Eα.

This paper is on the second problem where a few or all blocks need not
have Jordan form. The critical factor is the the availability of estimates
‖Φα(t, s)‖ and ‖Φα(t, s)−1‖ for the block fundamental matrices, which
is explicit when a block has Jordan form. From Proposition 3.1, esti-
mates are available solely from eigenvalues for upper triangular blocks
(fundamental matrices of Jordan block are also upper triangular).

Appendix A.

The following derivation is a small improvement of [8, Theorem 1]
with abstract assumptions. The proof is identical.

Theorem A.1. Suppose that U(t) = diag(B0(t), B1(t)) with B0(t)
and B1(t) of dimensions N0 ×N0 and N1 ×N1 respectively. Let
{ΦB0(t, τ)}t,τ∈R and {ΦB1(t, τ)}t,τ∈R be their fundamental matrices re-
spectively and N = N0 +N1. We assume the followings.

1.
∫∞
a0
‖E(t)‖ <∞ for some a0.

2. There is a real-valued function θ and a constant C > 0 such that
(a) for any t ≥ τ ≥ a0

‖ΦB0(t, τ)e−
∫ t
τ θ(η) dη‖ ≤ C,
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and for any τ ≥ a0

(A.1) lim
t→∞
‖ΦB0(t, τ)e−

∫ t
τ θ(η) dη‖ = 0,

(b) for any t ≥ τ ≥ a0

‖ΦB1(τ, t)e
∫ t
τ θ(η) dη‖ ≤ C

Then there is a constant a and an N0-dimensional subspace E of RN
such that x(a) ∈ E implies lim

t→∞
|x(t)|θ = 0.

Proof. Let y(a) be a vector such that P0y(a) = y(a) and y(t) =
Φ(t, a)y(a). We look for a solution of the following integral equation.
(A.2)

x(t) = y(t) +

∫ t

a
P0Φ(t, τ)E(τ)x(τ) dτ −

∫ ∞
t

P1Φ(t, τ)E(τ)x(τ) dτ.

If x(t) exists, that x(t) solves (3.2) follows from that each column of
Φ(t, τ) solves (3.1). In particular, we have P0x(a) = y(a). Suppose such

an x(t) exists. Multiplying both sides by e−
∫ t
a θ(η) dη and using block

matrices calculus,
(A.3)

x(t)e−
∫ t
a θ(η) dη = y(t)e−

∫ t
a θ(η) dη

+

∫ t

a

(
Φ0(t, τ)e−

∫ t
τ θ(η) dη

)(
E(τ)x(τ)e−

∫ τ
a θ(η) dη

)
0
dτ

−
∫ ∞
t

(
Φ1(t, τ)e

∫ τ
t θ(η) dη

)(
E(τ)x(τ)e−

∫ τ
a θ(η) dη

)
1
dτ.

Since ‖E(t)‖ is integrable, we can choose a so that C
∫∞
a ‖E(τ)‖ dτ < 1

2 .
Then, we have

|x(t)− y(t)|θ ≤
∫ t

a
‖Φ0(t, τ)e−

∫ t
τ θ(η) dη‖ ‖E(τ)‖ |x(τ)|θ dτ

+

∫ ∞
t
‖Φ1(t, τ)e

∫ τ
t θ(η) dη‖ ‖E(τ)‖ |x(τ)|θ dτ

≤ 1

2
‖x‖θ.

Let y be fixed and Sy be the operator on L∞θ ([a,∞)) that maps
x ∈ L∞θ ([a,∞)) to the function the right-hand-side of (A.2) defines.

The previous estimate shows that ‖Syx‖θ ≤ ‖y‖θ+ 1
2‖x‖θ <∞ and thus

Syx ∈ L∞θ ([a,∞)), hence the solution of the integral equation is the fixed
point of the operator. The same estimate shows that ‖Syx − Syx̄‖θ ≤
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1
2‖x− x̄‖θ. By the contraction mapping principle, there is a unique fixed
point.

It is clear that ‖x‖θ ≤ 2‖y‖θ. The map y(a) 7→ x(a), where the func-
tion x is the unique fixed point of Sy, is a linear map from E0

(
= P0RN

)
to RN . As P0x(a) = y(a), the linear map is injective and has rank N0.
E is then the range space.

We know that |y(t)|θ → 0 as t → ∞. It remains to show that
|x(t)|θ → 0 as t→∞ as well. We show that |x(t)− y(t)|θ → 0. Let the
first integral in (A.3) be I1 and the second be I2. I2 converges to 0 since

lim
t→∞

∫ ∞
t
‖Φ1(t, τ)e

∫ τ
t θ(η) dη‖ ‖E(τ)‖ |x(τ)|θ dτ

≤ 2C‖y‖θ lim
t→∞

∫ ∞
t
‖E(τ)‖ dτ = 0.

For I1, we divide the integral into(∫ t1

a
+

∫ t

t1

){(
Φ0(t, τ)e−

∫ t
τ θ(η) dη

)(
E(τ)x(τ)e−

∫ τ
a θ(η) dη

)
0
dτ
}
.

for some t1 ≤ t. For any ε > 0, we can choose t and t1 so large enough,
while retaining t ≥ t1, that I1 ≤ ε in the following manner. With the
same reasoning used for I2, we can choose t1 so large that the integral
over [t1, t] is smaller than ε

2 . We can express the integral over [a, t1] as

(
Φ0(t, t1)e

−
∫ t
t1
θ(η) dη) ∫ t1

a

(
Φ0(t1, τ)e−

∫ t1
τ θ(η) dη

)(
E(τ)x(τ)e−

∫ τ
a θ(η) dη

)
0
dτ.

From (A.1), ‖Φ0(t, t1)e
−

∫ t
t1
θ(η) dη‖ → 0 as t → ∞, and the integral in

[a, t1] must be finite. Therefore we can choose t so large that the above
is smaller than ε

2 .

For convenience, we include Levinson’s theorem [9] in the following
form.

Theorem A.2 (Levinson’s theorem). Let x(t) ∈ RN and x′(t) =(
Λ(t) + E(t)

)
x, where Λ(t) is a diagonal matrix with diagonal entries

λj(t), j = 1, · · · , N bounded and E(t) is a matrix such that ‖E‖ inte-
grable, i.e.,

∫∞
a0
‖E(t)‖dt <∞ for some a0. Fix an index k. Suppose we

can find some constant A so that either of the following two membership
conditions holds for every i.
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i ∈ I1 if∫ ∞
a0

Re(λk(s)− λi(s)) ds→∞ as t→∞ for some a0,(A.4) ∫ t2

t1

Re(λk(s)− λi(s)) ds > −A, whenever t2 ≥ t1 ≥ 0(A.5)

and i ∈ I2 if∫ t2

t1

Re(λk(s)− λi(s)) ds < A, whenever t2 ≥ t1 ≥ 0.(A.6)

Then there is an orbit ϕk(t) t ≥ a for some a such that,

(A.7) lim
t→∞

ϕk(t) exp

(
−
∫ t

a
λk(s) ds

)
= k̂,

where k̂ is the k-th coordinate basis of Rd.
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