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THE CORRELATION DIMENSION OF GENERALIZED

CANTOR-LIKE SETS

Mi Ryeong Lee and Hunki Baek

Abstract. In the paper, a symbolic construction is considered to
define generalized Cantor-like sets. Lower and upper bounds for
the correlation dimension of the sets with a regular condition are
obtained with respect to a probability Borel measure. Especially,
for some special cases of the sets, the exact formulas of the corre-
lation dimension are established and we show that the correlation
dimension and the Hausdorff dimension of some of them are the
same. Finally, we find a condition which guarantees the positive
correlation dimension of the generalized Cantor-like sets.

1. Introduction

The most basic tool to characterize fractal sets is to calculate their
fractal dimensions, such as the Hausdorff dimension, information dimen-
sion, and box dimension, etc. Especially, the Hausdorff dimension has
been investigated by many researchers because it has the advantage of
being defined for any set, and is mathematically convenient, as it a based
on measures, which are relatively easy to manipulate.(cf, [7, 15, 16]).
However, one of the disadvantage of studying the Hausdorff dimension
is that in many cases it is very difficult to compute or to estimate its
value.(see [6]). In order to overcome such drawback, in [8], the authors
introduced a brand new fractal dimension, so called the correlation di-
mension. The correlation dimension rather than other dimensions often
give us as well advantages of calculations as mathematical characteri-
zations and some physical explanations on a dynamical system as the
information or box dimension.(see [8, 9, 11]).
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Many authors have studied for various types of Cantor sets as typical
fractal sets which mean compact, totally disconnected and perfect sub-
sets in R1. (cf, [1, 2, 4, 5, 13, 14, 19]). The author in [1] found out lower
and upper bounds for the Hausdorff dimension of a deranged Cantor set
and the authors in [2] and [19] calculated the exact packing dimension
and Hausdorff dimension, respectively. In [4], they found the Hausdorff
dimension of a Cantor set considering infinitely many contractive ratios.
On the other hand, in [5] and [13] they considered a random map having
a given number of contractive ratios, in connection with each random
sequence in (0, 1) and obtained formulas for the correlation dimension of
the generated set by the given map. Especially, in [14] and [18], the au-
thors introduced a symbolic construction for Cantor-like sets which are
generalizations of constructions, so-called, the iterated function system
of a family of contractive maps or the Moran construction and so on.
In addition, they investigated formulas for fractal dimensions, such as
Hausdorff, box, packing or correlation dimensions, of the generated set
by a symbolic construction. In order to obtain lower and upper bounds
for the dimensions of the Cantor-like set, they used an equilibrium mea-
sure on the set concerned with a suitable vector of real numbers.

Thus, in this paper, we first introduce a symbolic construction for
generalized Cantor-like sets. We deal with infinitely many contractive
ratios in the construction of the sets and define a probability Borel mea-
sure on the set induced by the given symbolic construction together with
a sequence of vectors of random numbers in (0, 1). Using the theory of
energy, we find lower and upper bounds for the correlation dimension of
the generalized Cantor-like sets with a regular condition with respect to
the probability measure. Moreover, we obtain results in [4] as corollaries
by considering some restrictions in our construction and show that the
correlation dimension of some of the sets is equal to the Hausdorff dimen-
sion. Also, we see that many results about the correlation dimension in
other papers can be followed as corollaries from our results. Finally, we
find a condition which guarantees the positive correlation and Hausdorff
dimensions of some generalized Cantor-like sets.

2. Preliminaries

Let us introduce a symbolic construction for generalized Cantor-like
sets in R1. Fix an integer l ≥ 2 and take an integer m satisfying 1 ≤
m ≤ l.
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Let Σl ≡ {1, 2, ..., l}N = {(i1, i2, ...) : ij ∈ {1, ..., l}, j = 1, 2, ...}. Con-
sider a symbolic set S = {(i1, i2, ...) ∈ Σl : i2n−1 ∈ {1, ...,m}, i2n ∈
{1, ..., l}, n = 1, 2, ...}.
Put I = [0, 1]. Denote | · | the length of an interval in R1.
Let us construct the basic intervals of a generalized Cantor-like set as
follows. I contains mutually disjoint closed subintervals I1, ..., Im satis-
fying 0 < |Ii| = ri and

∑m
i=1 ri < 1. Next, Ii contains mutually disjoint

closed subintervals Ii1, Ii2, ..., Iil satisfying

0 <
|Iij |
|Ii|

= rij and
l∑

j=1

rij < 1

for 1 ≤ i ≤ m and 1 ≤ j ≤ l. By repeating these subdivisions, each
basic Ii1...in−1 for n ≥ 2 contains mutually disjoint closed subintervals
{Ii1...in−1in} satisfying

0 <
|Ii1...in |
|Ii1...in−1 |

= ri1...in and
∑
in

ri1...in < 1

where 1 ≤ in ≤ m for n being odd and 1 ≤ in ≤ l for n being even
number.
For each n ∈ N, an n-tuple (i1, i2, ..., in) ∈ {1, 2, ..., l}n is called S-
admissible if there exists w = (i′1, i

′
2, ...) ∈ S such that i′j = ij for 1 ≤

j ≤ n. Put Sn be the set of all S-admissible n-tuples (i1, ..., in) and
S∗ = ∪n≥1Sn.
We may assume that the following condition;

0 < r ≤ inf{ri1...in : (i1, ..., in) ∈ S∗, for n ∈ N}.
Let

F =

∞⋂
n=1

⋃
(i1,...,in)∈Sn

Ii1i2...in

We call this set F a generalized Cantor-like set generated by the symbolic
set S.

Remark 2.1 In this note, because we do not use properties of er-
godicity as in [13] or [14], we need not conditions about the symbolic
set, so-called, invariant set and topological transitivity under some shift
map.

Now we are in a position to define a probability measure on the set
F .
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First, we choosem-numbers c
(1)
1 , c

(1)
2 , ..., c

(1)
m ∈ (0, 1) satisfying Σm

k=1c
(1)
k

= 1, and define a map p by p(Ii) = c
(1)
i for i = 1, ...,m. Next, we choose

l-numbers c
(2)
1 , c

(2)
2 , ..., c

(1)
l ∈ (0, 1) satisfying Σl

k=1c
(2)
k = 1, and define

p(Ii1i2) = c
(2)
i2
· p(Ii1) = c

(2)
i2
c
(1)
i1

for i1 = 1, ...,m and i2 = 1, 2, ..., l. Con-
tinuing these processes, at n-th stage, we can choose either m-numbers

c
(n)
1 , c

(n)
2 , ..., c

(n)
m ∈ (0, 1) satisfying Σm

k=1c
(n)
k = 1 for n being odd number

or l-numbers c
(n)
1 , c

(n)
2 , ..., c

(n)
l ∈ (0, 1) satisfying Σl

k=1c
(n)
k = 1 for n being

even number. And we define a map p as follows:

p(Ii1...in) = c
(n)
in
· p(Ii1...in−1) =

n∏
j=1

c
(j)
ij

for each S-admissible n-tuples (i1, i2, ..., in) and all n ∈ N.

For the generalized Cantor-like set F generated by S, put

µp(A) = inf

{ ∑
(i1,...,in)∈C

p(Ii1...in) : A ⊂
⋃

(i1,...,in)∈C

Ii1...in for C ⊂ S∗
}
,

for any Borel subset A of F .

Then µp is a probability measure on the set F (see [3, 4]).

To obtain the lower bound of the correlation dimensions of the gener-
ated Cantor-like set generated by the symbolic set S, we a little moderate
in our construction by adaptation a regular symbolic construction in [14]
or [18].

Let Z ⊂ S. Given 0 < r < 1. For each i = (i1, i2, ..., in, ...) ∈ Z, we
can find the unique integer number n(i) such that ri1 · · · rin(i)+1

≤ r <

ri1 · · · rin(i)
. We note that n(i) → ∞ as r → 0. Fix i ∈ Z and consider

the cylinder set Ci1,i2,...,in(i)
,

Ci1,i2,...,in(i)
= {j = (j1, j2, ...) ∈ S : jk = ik, k = 1, 2, ..., n(i)}.

Plainly, i ∈ Ci1,i2,...,in(i)
. We note that if i′ ∈ Ci1,i2,...,in(i′) ∩ Z and

n(i′) ≥ n(i), then Ci1,i2,...,in(i′) ∩ Z ⊂ Ci1,i2,...,in(i)
∩ Z.

Let C(i) be the largest cylinder set containing i with the property
that C(i) = Ci1,··· ,in(i′′) for some i′′ ∈ C(i) and Ci1,··· ,in(i′) ∩Z ⊂ C(i)∩Z
for any i′ ∈ C(i) ∩ Z. Then the sets C(i) corresponding to different

i ∈ Z either coincide or are disjoint. We denote these sets by C
(j)
r ,

j = 1, 2, · · · , Nr. We can easily see that these sets form a cover of Z.



The correlation dimension of generalized Cantor-like sets 223

Now, we define a bijective map Π from the symbolic set S to F as
Π(i) = ∩∞n=1Ii1i2···in ∈ F for any i = (i1, i2, · · · ) ∈ S.

Put I
(j)
r = Π(C

(j)
r ). Let N(x, r) denote the number of basic intervals I

(j)
r

that have non-empty intersection with the open ball B(x, r) centered x
and radius r. If N(x, r) is less than a uniform constant in x and r, then
we call this a regular condition. And we call a symbolic construction
regular if it admits the regular condition(cf. [14, 18]).

Remark 2.2 For the general case l 	 m, if the basic intervals
{Ii1i2...in} satisfy the following condition

sup
n

sup
(i1,i2,...,in)∈Sn

− log |Ii1i2...in |
n

≤ C

for some constant C > 0, then the symbolic construction becomes reg-
ular.

3. Results

Throughout this paper, let S, F,Π and µp be the same as in section
2. For simplicity of notations, we write in for the n-tuple (i1, ..., in) ∈
{1, 2, ..., l}n for i = (i1, ..., in, ...) ∈ Σl and Iin for the basic interval
Ii1,i2,...,in at the n-th step(n ≥ 1). Also we write µ for µp.
Our goal is to obtain some estimations about the correlation dimension
D2(A,µ) of A(⊂ R) with respect to the probability measure µ([5, 17,
18]);

D2(A,µ) ≡ sup{s ≥ 0 : Is(µ) <∞} = inf{s ≥ 0 : Is(µ) =∞},

where Is(µ) =
∫
A

∫
A |x−y|

−sdµ(x)dµ(y) is the s-energy of A with respect
to µ.

Denote B(x, r) for the open ball of radius r > 0 centered at x.

Lemma 3.1. Let F be a generalized Cantor-like set. If E ⊆ F
satisfies that for µ-almost all ∩∞n=1Iin(≡ x) ∈ E,

lim sup
n→∞

logµ(Iin)

log |Iin |
≤ β

then there exists a constant a1 > 0 such that µ(B(x, r) ∩ E) ≥ a1rβ.

Proof. Let r > 0 be given. For each x ∈ E, there uniquely exists
i = (i1, i2, i3, ...) ∈ S satisfying Π(i) = ∩∞n=1Iin = x.
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Using the similar arguments for the cylinder set as previous, we can find
a large number n0 ≡ n0(x) ∈ N satisfying x ∈ Iin0+1 and

|Iin0+1 | ≤ r < |Iin0
|.(3.1)

By the assumption, there exists a large number N0 such that for any
n ≥ N0,

x ∈ Iin and µ(Iin) ≥ |Iin |β.(3.2)

For a sufficiently small number 0 < r < 1, we may assume that n0 ≥ N0.
Then for µ-almost all x ∈ E, we have B(x, r) ⊃ Iin0+1 and using (1) and

(2),

µ(B(x, r) ∩ E) ≥ µ(Iin0+1) ≥ |Iin0+1 |β

≥
|Iin0+1 |β

|Iin0
|β
· rβ ≥ rβ · rβ ≡ a1 · rβ.

Theorem 3.2. Let F be a generalized Cantor-like set. If E ⊆ F
satisfies the same condition as in Lemma 3.1, then we haveD2(E,µ) ≤ β.

Proof. In order to obtain the upper bound β for the correlation di-
mension D2(E,µ), we need to calculate the energy of E with respect to
the measure µ. Put φt(x) =

∫
E |x − y|

−tdµ(y). Then, by Lemma 3.1,
for all t > β,

φt(x) =

∫ ∞
0

µ({y ∈ E : |x− y|−t ≥ r})dr =

∫ ∞
0

µ(B(x, r−1/t) ∩ E)dr

= t

∫ ∞
0

ε−t−1 µ(B(x, ε) ∩ E)dε

≥ t
∫ ∞
0

ε−t−1 · a1 · εβdε =∞.

Therefore It(µ) =
∫
E φt(x) dµ(x) = ∞, for all t > β, which implies

D2(E,µ) ≤ β.

Lemma 3.3. Let F be a generalized Cantor-like set generated by a
regular symbolic construction. If E ⊆ F satisfies that for µ-almost all
x(≡ ∩∞n=1Iin) ∈ E,

α ≤ lim inf
n→∞

logµ(Iin)

log |Iin |
then there exists a constant a2 > 0 such that µ(B(x, r) ∩ E) ≤ a2rα.
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Proof. Let r > 0 be given. For each x ∈ E, there uniquely exists
i = (i1, i2, i3, ...) ∈ S satisfying Π(i) = ∩∞n=1Iin = x. Also we can find a
number n1 ≡ n1(x) ∈ N satisfying x ∈ Iin1+1 and

|Iin1+1 | ≤ r < |Iin1
|.(3.3)

From the above assumption, we can get for all l ≥ k,

x ∈ Iil and µ(Iil) ≤ |Iil |
α.(3.4)

From the definition of the regular symbolic construction, we note that

(B(x, r)∩E) ⊂
⋃N(x,r) Iin1

. If we take r sufficiently small, then we may

assume that n1 ≥ k. Hence for µ-almost all x ∈ E, using the facts (3)
and (4),

µ(B(x, r) ∩ E) ≤
N(x,r)∑

µ(Iin1
) ≤ Const. · | Iin1

|α

≤ Const.r−α rα ≡ a2rα.

Theorem 3.4. Let F be a generalized Cantor-like set generated by
a regular symbolic construction. If E ⊆ F satisfies the same condition
as in Lemma 3.3, then we have α ≤ D2(E,µ).

Proof. In order to obtain the lower bound α for the correlation di-
mension D2(E,µ) of E, we need to calculate the s-energy of E as in the
proof of Theorem 3.2. Using Lemma 3.3, for all t < α,

φt(x) = t

∫ ∞
0

ε−t−1 µ(B(x, ε) ∩ E)dε

< t

[∫ 1

0
ε−t−1µ(B(x, ε) ∩ E)dε +

∫ ∞
1

ε−t−1µ(E)dε

]
≤ a2t

∫ 1

0
εα−t−1 dε + µ(E) <∞.

Hence It(µ) =
∫
E φt(x) dµ(x) <∞ for all t < α, which impliesD2(E,µ) ≥

α.

Remark 3.1. In our construction, if let l = m and the ratios at n-th
step ri1,i2,...,in ∈ {r1, ..., rm} for n ≥ 1 as in [5], then such construction
in [5] becomes regular and the results in [3] follow.

As the special case l = m(≥ 2), i.e. S = Σm ≡ {1, 2, ...,m}N, we
obtain some interesting results for the central Cantor sets(see [4]) and
generalized Cantor-like sets.
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First case, if we take rn+1 = rin,1 = · · · = rin,m for all in = (i1, i2, ..., in)
∈ {1, ...,m}n, n ≥ 1, then we call the set F the central Cantor set([4]).

Moreover, if we restrict that the chosen numbers c
(j)
k = 1

m , for 1 ≤ k ≤ m
and all j ≥ 1, then we also have the induced probability measure µ̄ on
F from the method in section 2.

Proposition 3.5. Let F be the central Cantor set and µ̄ be defined
as the above. Then

D2(F, µ̄) = lim inf
n→∞

n logm

− log r1 · r2 · · · rn
= dimH F

where dimH F is the Hausdorff dimension of the set F .

Proof. The proof of the second equality is parallel to the proof of
Proposition 3.1 in [4].
Since we know that D2(F, µ̄) ≤ dimH F for any probability measure µ̄
on F ([13, 14, 20, 21]), we only prove that

D2(F, µ̄) ≥ lim inf
n→∞

n logm

− log r1 · r2 · · · rn
≡ t.

Given ε > 0, we can find n0 ∈ N such that m−k < (r1 · r2 · · · rk)t−ε for
all k ≥ n0.
For any x ∈ F , we choose an open ball B(x, r) satisfying r1 ·r2 · · · rn+1 ≤
r < r1 · r2 · · · rn for such an n ≥ n0. Put In = Iin(in ∈ Sn) for the basic
intervals at the n-th step in the construction of F . Then the number
N(x, r) is less than or equal to 2. Using the above facts and each ri <

1
m

for i = 1, ...,m,

µ̄(B(x, r)) = µ(B(x, r) ∩ F ) ≤ 2 · µ̄(In) = 2 ·m−n

< 2 ·mt−ε · (r1 · r2 · · · rn+1)
t−ε < a3r

t−ε

where a3 > 0 is a constant.
Since ε is arbitrary, we have µ̄(B(x, r)) ≤ a3rt, for all x ∈ F and r > 0.
From Theorem 3.4, we have D2(F, µ̄) ≥ t.

Corollary 3.6. If F is the central Cantor set and µ̄ is defined as the
above, then the following conditions are equivalent:
(i) dimH F = 0;

(ii) limn→∞(r1 · r2 · · · rn)
1
n = 0;

(iii) D2(F, µ̄) = 0.

Proof. For (i) ⇐⇒ (ii), the argument is similar to Corollary 3.3 in
[4].
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For (ii)⇐⇒ (iii), by using two facts D2(F, µ̄) ≤ dimH F and Proposition
3.5, we have the equivalence.

Next, for more generalized sets than central Cantor sets, their corre-
lation dimensions are obtained as follows.

Let F be a generalized Cantor-like set generated by a regular symbolic

construction and let pk = c
(k)
j be fixed positive number for 1 ≤ k ≤ m

and all j ≥ 1 satisfying
∑m

k=1 pk = 1. We consider the Borel subset
F (p1, p2, ..., pm) of F like as in [5] or [13]:

F (p1, ..., pm) ≡
{

Π(i) ∈ F : lim
n→∞

#{j : ij = k, 1 ≤ j ≤ n}
n

= pk, 1 ≤ k ≤ m
}
.

Denote µ̄ for the induced probability measure on F (p1, ..., pm) from
(p1, ..., pm), in = (i1, i2, ..., in) ∈ {1, ...,m}n for all n ≥ 1 and rin for
the ratios at the n-th step (i.e. rin = ri1i2...in).

Proposition 3.7. For the subset F (p1, p2, ..., pm) and the probability
measure µ̄,

D2(F (p1, p2, ..., pm), µ̄) = lim inf
n→∞

∑m
i=1 pi log pi

1
n log ri1ri2 · · · rin

.

Proof. By the definition of F (p1, p2, ..., pm), we have for any point
Π(i) = ∩∞n=1Iin in F (p1, ..., pm),

|Iin | = ri1 · ri2 · · · rin and µ̄(Iin) = pn1
1 · p

n2
2 · · · p

nm
m

where
∑m

i=1 ni = n.
Then, by simple calculations as in [5] or [13] and using Theorem 3.2 and
3.4, we have the result.

Corollary 3.8. In Proposition 3.7, if we take pi = 1
m for i = 1, ...,m

and µ̄ as the above, then we obtain the followings

D2

(
F (

1

m
, ...,

1

m
), µ̄

)
= lim inf

n→∞

n logm

− log ri1ri2 · · · rin
= dimH F (

1

m
, ...,

1

m
).

Now, we introduce the following condition for ratios at each stage
which provides a latent possibility for the correlation dimension of a
generalized Cantor-like set without regularity. We can obtain the idea
and method of proof from [4] and [10].

Proposition 3.9. For every n-tuple in = (i1, i2, ..., in) ∈ S∗, if there
is a constant M ∈ N satisfying for all n, j ≥ 1,

1

M
≤ ri1ri2 · · · rin
ri1+j

ri2+j
· · · rin+j

≤M



228 Mi Ryeong Lee and Hunki Baek

then (ri1ri2 · · · rin)
1
n converges to a non-zero constant.

Proof. Let ik = (i1, i2, ..., ik) ∈ S∗ for all k ≥ 1. PutHik = ri1ri2 · · · rik .
Then

1

M
≤
Hik ·Hij

Hik+j

≤M.

Taking the logarithm and put δ = logM and Lik = logHik for all k ≥ 1.
Then

−δ + Lik + Lij ≤ Lik+j
≤ δ + Lik + Lij .(3.5)

It is sufficient to show that

{
Lik
k

}
is a Cauchy sequence.

First, using inequality (5) and inductive method on k,we get

−kδ + kLij ≤ Likj ≤ kδ + kLij .(3.6)

Manipulating (6) inequality, we have

−(k + j)δ + kLij ≤ jLik ≤ (k + j)δ + kLij .(3.7)

Divide (7) by kj, we obtain for all k and j,∣∣∣∣Lij

j
− Lik

k

∣∣∣∣ ≤ (1

k
+

1

j

)
δ.

Therefore we obtain that

{
Lik
k

}
is a Cauchy sequence.

Remark 3.2. (1) Let the sequence {c(j)k }
∞
j=1 be given in section 2

(i.e. 0 < c
(j)
k < 1 for each j ≥ 1 satisfying

∑m
k=1 c

(j)
k = 1(j: odd) or∑l

k=1 c
(j)
k = 1(j: even)). Like as assumptions for the sequence {c(j)k }

∞
j=1

in Proposition 3.5 or Proposition 3.7, if we have some controls over the

sequence {c(j)k }
∞
j=1, then from Proposition 3.9, we can obtain that two

bounds of the correlation dimension for a generalized Cantor-like set in
Theorem 3.2 and Theorem 3.4. become the same value.
(2) Proposition 3.9 guarantees the positive Hausdorff dimension and
correlation dimension of the set F .

The following example explains us that the regular condition in our
symbolic construction need not satisfy the condition in Proposition 3.9.

Example 3.10. Consider a symbolic set S = {1, 2}N satisfying con-
ditions in section 2. Take a sequence {rin : in ∈ {1, 2}n, n ≥ 1} such
that rin = rn = (14)n + δ (0 < δ < 1) for all n = 1, 2, 3, .... For all
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i = (i1, i2, ...) ∈ S and all n, j ≥ 1, we can not find the constant M satis-
fying the condition in Proposition 3.9. On the other hand, for fixed r > 0
and x = Π(i) for i = (i1, i2, i3, ...) ∈ S, there exists an integer number
n0 ≡ n0(i) such that i ∈ Ci1...in0+1 and ri1 · · · rin0+1 ≤ r < ri1 · · · rin0

.

So the open ball B(x, r) intersects at most two images for the map Π of
such cylinders at n0-th step. Then the number N(x, r) is less than or
equal to 2 independent of x and r.
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