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OSCILLATION OF ONE ORDER NEUTRAL DIFFERENTIAL

EQUATION WITH IMPULSES

Jinfa Cheng and Yuming Chu

Abstract. Explicit sufficient conditions are established for the oscilla-
tion of the one order neutral differential equations with impulsive

(x(t) +
n∑

i=1

cix(t− σi))
′ + px(t− τ) = 0, t ̸= tk,

∆(x(tk) +
n∑

i=1

cix(tk − σi)) + p0x(tk − τ) = 0,

where ci ≥ 0, i = 1, 2, . . . , n, pτ > 0, p0τ > 0,∆(xk) = x(t+k )− x(tk). Ex-

plicit sufficient and necessary condition are established when ci = 0, i =
1, 2, . . . , n.

1. Introduction

The oscillation theory of impulsive differential equations is one of the di-
rections which initiated the investigations on the qualitive properties of the
differential equations. It was published in 1989 the paper of K. Gopalsamy and
B. G. Zhang [7] where the first investigation on the oscillatory properties of
impulsive differential equation was carried out. Unfortunately, this work was
not followed by another publications.

During the last several years, D. Bainov and D. P. Mishev have studied
the oscillatory properties of various of impulsive differential equations. The
monograph [5] is the first book to present systematically the result known up to
1998, and to demonstrate how well-know mathematical techniques and methods
after suitable modification, can be applied in proving oscillatory theorems for
impulsive differential equations. For oscillation theory of differential equation,
we prefer to the monographs [1, 2, 3, 4, 6, 8].
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Consider the periodic linear impulsive neutral differential equation with de-
lay

(x(t) +
n∑

i=1

cix(t− σi))
′ + p x(t− τ) = 0, t ̸= tk,

(1.1)

∆(x(tk) +
n∑

i=1

cix(tk − σi)) + p0 x(tk − τ) = 0,

where ci ≥ 0, i = 1, 2, . . . , n,∆x(tk) = x(t+k )− x(t−k ).
We assume the validity of the following conditions:
H1. p > 0, 0 < p0 < 1, τ > 0.
H2. There exist m,mi ∈ N such that

i[t− σi, t) = mi, i[t− τ, t) = m, t ∈ R.

Here i ⟨a, b⟩ denotes the number of the points tk, lying in the interval ⟨a, b⟩.
We are looking for a positive solution of the equation (1.1) in the form

x(t) = e−λt(1− µ)i[0,t],(1.2)

where λ ∈ R, µ < 1.
We substitute (1.2) into (1.1) and obtain that x(t) has the form (1.2) if

λ+
n∑

i=1

ciλe
λσi(1− µ)−mi = peλτ (1− µ)−m,

(1.3)

µ+

n∑
i=1

ciµe
λσi(1− µ)−mi = p0e

λτ (1− µ)−m.

The system (1.3) is called characteristic system corresponding to the equation
(1.1).

It is easy to see that the solution (λ, µ) of Eq.(1.3) satisfies µ = p0

p λ. More-

over the system (1.3) has a solution (λ, µ) with µ < 1 if and only if the char-
acteristic equation

(1.4) H(λ) = −λ−
n∑

i=1

ciλe
λσi(1− p0

p
λ)−mi + peλt(1− p0

p
λ)−m = 0

has a solution λ ∈ (0, p0

p ). The following basic result was established by D.

Bainov and P. Simeonov [5].

Theorem A. Let the conditions H1 and H2 be fulfilled. Then the following
assertions are equivalent:

(i) The equation (1.4) has no solution λ ∈ (0, p0

p ).

(ii) The characteristic system (1.3) has no solution (λ, µ) with µ < 1.
(iii) Each regular solution of the equation (1.1) is oscillatory.
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Similarly, we consider the periodic linear impulsive neutral differential equa-
tion with advance

(x(t) +
n∑

i=1

cix(t+ σi))
′ + p x(t+ τ) = 0, t ̸= tk,

(1.5)

∆(x(tk) +

n∑
i=1

cix(tk + σi)) + p0 x(tk + τ) = 0.

We introduce the following conditions:
H3. p < 0, p0 < 0, τ > 0.
H4. There exist n, n1 ∈ N such that

i[t, t+ σi] = ni, i[t, t+ τ ] = n, t ∈ R.

We look for a positive solution of the equation (1.5) with form (1.2).
Substituting (1.2) into (1.5) we obtain that x(t) is a solution of Eq.(1.5) if

λ+

n∑
i=1

ciλe
−λσi(1− µ)ni = pe−λτ (1− µ)n,

(1.6)

µ+

n∑
i=1

ciµe
−λσi(1− µ)ni = p0e

−λτ (1− µ)n.

The system (1.6) is called characteristic system corresponding to the equation
(1.5).

We get the solution (λ, µ) of system (1.6) µ = p0

p λ, and the system (1.6) has

a solution (λ, µ) with µ < 1 if and only if the characteristic equation

(1.7) H(λ) = −λ−
n∑

i=1

ciλe
−λσi(1− p0

p
λ)ni + pe−λτ (1− p0

p
λ)n = 0

has a solution λ for which λ < p
p0
.

Theorem B. Let the conditions H3 and H4 be fulfilled. Then the following
assertions are equivalent:

(j) The equation (1.7) has no solution λ < 0.
(jj) The characteristic system (1.6) has no solution (λ, µ) with µ < 0.
(jjj) Each regular solution of the equation (1.5) is oscillatory.

Just like on the case when we investigate one order linear differential equa-
tions without impulses, it is very significant to obtain explicit sufficient condi-
tions or necessary and sufficient conditions for the oscillation, see the mono-
graph [8]. Although Theorem A and Theorem B are fundamental results, they
are not easy to apply. Therefore, in this paper, we give explicit sufficient condi-
tions for oscillation of Eq.(1.1) and Eq.(1.5), necessary and sufficient conditions
for oscillation of Eq.(1.1) and Eq.(1.5) when ci = 0, i = 1, 2, . . . , n. It is notable
that when Eq.(1.1) and Eq.(1.5) are reduced to differential equations without
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impulses, our results improve or coincide with the corresponding theorems in
[8].

2. Main results and proofs

Theorem 1. Let the conditions H1 and H2 be fulfilled. Then every solution
of Eq.(1.1) oscillates if

(2.1) −λ0(1− λ0)
me−

p
p0

λ0τ −
n∑

i=1

ciλi(1− λi)
m−mie−

p
p0

λi(τ−σi) + p0 > 0,

where

λ0 =

pτ
p0

+m+ 1−
√

(pτp0
+m+ 1)2 − 4pτ

p0

2pτ
p0

,

λi =

p(τ−σi)
p0

+m−mi + 1−
√

(p(τ−σi)
p0

+m−mi + 1)2 − 4p(τ−σi)
p0

2p(τ−σi)
p0

.

Proof. By Theorem A, for equation

H(λ) = −λ−
n∑

i=1

ciλe
λσi(1− p0

p
λ)−mi + peλτ (1− p0

p
λ)−m = 0,

if it has no solution λ ∈ (0, p0

p ), then each solution is oscillatory. From H(λ) =

0, we have

(2.2) −p0
p
λ(1− p0

p
λ)m −

n∑
i=1

ci
p0
p
λeλσi(1− p0

p
λ)m−mi + p0e

λτ = 0.

Let p0

p λ = λ̃, then λ̃ ∈ (0, 1). For the sake of convenience, we still denote λ̃ by

λ. Then Eq.(2.2) becomes

(2.3) −λ(1− λ)m −
n∑

i=1

ciλe
p
p0

λσi(1− λ)m−mi + p0e
p
p0

λτ = 0.

Set

F (λ) = −λ(1− λ)me−
p
p0

λτ −
n∑

i=1

ciλ(1− λ)m−mie−
p
p0

λ(τ−σi) + p0.

If F (λ) = 0 has no solution in (0, 1), then from Theorem A we know that each
solution is oscillatory. Let

G(λ) = −λ(1− λ)me−
p
p0

λτ ,

Gi(λ) = −ciλ(1− λ)m−mie−
p
p0

λ(τ−σi).

Then

G′(λ) = (1− λ)m−1e−
p
p0

λτ [−pτ

p0
λ2 + (

pτ

p0
+m+ 1)λ− 1].
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Denote

I(λ) = − [
pτ

p0
λ2 − (

pτ

p0
+m+ 1)λ+ 1],

∆ = (
pτ

p0
+m+ 1)2 − 4

pτ

p0
.

Obviously, ∆ > (pτp0
+m− 1)2. If m ̸= 0, then ∆ > 0 and equation I(λ) = 0

have two different real roots:

λ0 =

pτ
p0

+m+ 1−
√
∆

2pτ
p0

,

λ̃0 =

pτ
p0

+m+ 1 +
√
∆

2pτ
p0

.

It is easy to verify that

0 < λ0 < 1 < λ̃0.

We can delete λ̃0 since λ̃0 > 1. Therefore we obtain the following conclusions:
1. If 0 < λ < λ0, then I(λ) < 0, that is G′(λ) < 0 and G(λ) is decreasing;
2. If λ0 < λ < 1, then I(λ) < 0, that is G′(λ) > 0 and G(λ) is increasing.

Thus G(λ) attain its minimum value at λ = λ0 and

G(λ) = −λ(1− λ)me−
p
p0

λτ ≥ −λ0(1− λ0)
me−

p
p0

λ0τ .

Similarly, we conclude that Gi(λ) attain its minimum value at λ = λi and

Gi(λ) = −ciλ(1− λ)m−mie−
p
p0

λ(τ−σi) ≥ −ciλi(1− λi)
m−mie−

p
p0

λi(τ−σi).

In view of the condition (2.1), we get F (λ) > 0 for all λ ∈ (0, 1), so there does
not exists real root in (0, 1) for equation F (λ) = 0 and Eq.(1.1) is oscillatory.

Remark 1. If m = 0, mi = 0, i = 1, 2, . . . , n, then Eq.(1.1) is a differential
equation without impulses

(x(t) +
n∑

i=1

cix(t− σi))
′ + px(t− τ) = 0,

and λ0 = p0

pτ , λi =
p0

p(τ−σi)
. The condition (2.1) becomes

− p0
pτ

e−1 −
n∑

i=1

ci
p0

p(τ − σi)
e−1 + p0 > 0.

That is
1

τ
+

n∑
i=1

ci
1

τ − σi
< pe.

Further, if c2 = c3 = · · · = cn = 0, then

1

τ
+ c1

1

τ − σ1
< pe,

which is a improvement of Theorem 6.1.3 in [8].
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Theorem 2. Let the conditions H3 and H4 be fulfilled. Then every solution
of Eq.(1.5) oscillates if

(2.4) λ0(1 + λ0)
−ne−

p
p0

λτ +

n∑
i=1

ciλi(1 + λi)
−(n−ni)e−

p
p0

λi(τ−σi) + p0 < 0,

where

λ0 =
−(pτp0

+ n− 1) +
√
(pτp0

+ n− 1)2 + 4pτ
p0

2pτ
p0

,

λi =
−(p(τ−σi)

p0
+ n− ni − 1) +

√
(p(τ−σi)

p0
+ n− ni − 1)2 + 4pτ

p0

2p(τ−σi)
p0

.

Proof. By Theorem B, if

H(λ) = −λ−
n∑

i=1

ciλe
−λσi(1− p0

p
λ)ni + pe−λτ (1− p0

p
λ)n = 0

has no solution λ < 0, then each regular solution of Eq.(1.5) oscillates. It is
equivalent to the equation

H(λ) = λ+
n∑

i=1

ciλe
λσi(1 +

p0
p
λ)ni + peλτ (1 +

p0
p
λ)n = 0

has no real root λ ∈ (0,∞). We have

H(∞) < 0, H(0) = p < 0.

Equation H(λ) = 0 is equivalent to

(2.5)
p0
p
λ+

n∑
i=1

ci
p0
p
λeλσi(1 +

p0
p
λ)ni + p0e

λτ (1 +
p0
p
λ)n = 0.

Let p0

p λ = λ̃, λ = p
p0
λ̃. Then Eq.(2.5) becomes

λ̃+

n∑
i=1

ciλ̃e
p
p0

λ̃σi(1 + λ̃)ni + p0e
p
p0

λ̃τ (1 + λ̃)n = 0.

For the sake of convenience, we still denote λ̃ by λ, λ ∈ (0,∞). Then

F (λ) = λ(1 + λ)−ne−
p
p0

λτ +
n∑

i=1

ciλ(1 + λ)−(n−ni)e−
p
p0

λ(τ−σi) + p0.

Let
G(λ) = λ(1 + λ)−ne−

p
p0

λτ ,

Gi(λ) = ciλ(1 + λ)−(n−ni)e−
p
p0

λ(τ−σi).

Then

G′(λ) = e−
p
p0

λτ (1 + λ)−n−1[−pτ

p0
λ2 − (

pτ

p0
+ n− 1)λ+ 1].
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Denote

I(λ) = [−pτ

p0
λ2 − (

pτ

p0
+ n− 1)λ+ 1],

∆ = (
pτ

p0
+ n− 1)2 +

4pτ

p0
> 0.

Then I(λ) have two different roots:

λ0 =
−(pτp0

+ n− 1) +
√
(pτp0

+ n− 1)2 + 4pτ
p0

2pτ
p0

> 0,

λ̃0 =
−(pτp0

+ n− 1)−
√
(pτp0

+ n− 1)2 + 4pτ
p0

2pτ
p0

< 0.

We delete λ̃0 since λ̃0 < 0. So we have shown the validity of the following
conclusions:

1. If 0 < λ < λ0, then I(λ) > 0, that is G′(λ) > 0 and G(λ) is increasing;
2. If λ0 < λ < ∞, then I(λ) < 0, that is G′(λ) < 0 and G(λ) is decreasing.

Therefore G(λ) attain its maximum value at λ = λ0 and

G(λ) = λ(1 + λ)−ne−
p
p0

λτ ≤ λ1(1 + λ0)
−ne−

p
p0

λ0τ .

Similarly, we know that Gi(λ) attain its maximum value at λ = λi and

Gi(λ) = ciλ(1 + λ)−(n−ni)e−
p
p0

λ(τ−σi) ≤ cλi(1 + λi)
−(n−ni)e−

p
p0

λi(τ−σi).

From the condition (2.4) we know that equation F (λ) = 0 has no root in
(0,∞). Then from Theorem B we clearly see that every solution of Eq.(1.5)
oscillates.

Now if we let ci = 0, i = 1, 2, . . . , n, then we can obtain the following explicit
sufficient and necessary conditions for Eq.(1.1) and Eq.(1.5). □

Theorem 3. Let ci = 0, i = 1, 2, . . . , n and the conditions H1 and H2 be
fulfilled. Then every solution of Eq.(1.1) oscillates if and only if

(2.6) −λ0(1− λ0)
me−

p
p0

λ0τ + p0 > 0,

where λ0 =
pτ
p0

+m+1−
√

( pτ
p0

+m+1)2− 4pτ
p0

2pτ
p0

.

Proof. Sufficiency. The sufficiency follows directly from Theorem 1.
Necessity. Assume that the condition (2.6) does not hold, then

−λ0(1− λ0)
me−

p
p0

λ0τ + p0 ≤ 0,

where λ0 =
pτ
p0

+m+1−
√

( pτ
p0

+m+1)2− 4pτ
p0

2pτ
p0

, 0 < λ0 < 1. That is to say F (λ0) ≤ 0.

Since F (0) = p0 > 0, according to the continuity of F (λ), there exists λ1 ∈
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(0, λ0) such that F (λ1) = 0 or H(p0

p λ1) = 0. Therefore

x(t) = e−
p0
p λ1t(1− p0

p
λ1)

−m

is a nonoscillatory solution of Eq.(1.1) □

Remark 2. 1. If p → 0, then λ0 → 1
m+1 . In this case the condition (2.6)

becomes

p0 ≥ mm

(m+ 1)m+1
.

This result is the same as [8, Theorem 7.2.1]. In fact, if p = 0, then for
each solution x(t) of Eq.(1.1), there exists n0 ∈ Z such that x(t) ≡ ck+1 for
t ∈ (tk, tk+1], k ≥ n0. Here the sequence {ck} satisfies the difference equation

(2.7) ck+1 − ck + p0ck−m = 0.

The solution of (2.7) are oscillatory if and only if [8, Theorem 7.2.1].

p0
(m+ 1)m+1

mm
> 1, m ∈ N.

2. If m = 0, then λ1 = p0

pτ . In this case we have the following differential

equation without impulses:

x′(t) + px(t− τ) = 0,

and the condition (2.6) becomes

− p0
pτ

e−1 + p0 > 0,

that is pτe > 1. This result is the same as [8, Theorem 2.2.3].

Theorem 4. Let ci = 0, i = 1, 2, . . . , n and the conditions H3 and H4 be
fulfilled. Then every solution of Eq.(1.5) oscillates if and only if

(2.8) λ0(1 + λ0)
−ne−

p
p0

λ1τ + p0 < 0,

where λ0 =
−( pτ

p0
+n−1)+

√
( pτ
p0

+n−1)2+ 4pτ
p0

2pτ
p0

.

Proof. The sufficiency follows directly from Theorem 2 and the proof of the
necessity is similar to that of Theorem 3, so we omit it. □

Remark 3. 1. If p → 0, then λ0 → 1
n−1 . The condition (2.7) becomes

(n− 1)n−1

nn
+ p0 < 0, n > 1.

This result is the same as [8, Theorem 2.2.3].
2. If n = 0, then λ0 = pτ

p0
. In this case we have not impulses and the

condition (2.7) becomes F (λ0) =
p0

pτ e
−1 + p0 < 0 or 1 + pτe < 0.
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