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A HOMOMORPHISM OF POINTED MINIMAL SETS

AND ELLIS GROUPS

H. S. Song

Abstract. In this paper we give some results on homomorphisms
of pointed minimal sets. In particular, we investigate some charac-
terizations on Ellis groups.

1. Introduction

Universal minimal sets were studied by R. Ellis in [2]. In [3], S.
Glasner introduced the Ellis group which is a certain group of the uni-
versal minimal set. Given a homomorphism of pointed minimal sets
π : (X, x0) → (Y, y0), we can define the Ellis groups G(X, x0) and
G(Y, y0) and give a relationship between the homomorphism and the
Ellis groups.

The purpose of this paper is to study some characterizations on Ellis
groups and investigate the equivalent conditions for the homomorphism
to be proximal. Also we give some results on homomorphisms of pointed
minimal sets.

2. Preliminaries

A transformation group, or flow, (X,T ), will consist of a jointly con-
tinuous action of the topological group T on the compact Hausdorff space
X. The group T , with identity e, is assumed to be topologically discrete

Received July 13, 2011. Revised September 2, 2011. Accepted September 5, 2011.
2000 Mathematics Subject Classification: 54H20.
Key words and phrases: proximal homomorphism, distal homomorphism, pointed

minimal set, Ellis group.
The present research has been conducted by the Research Grant of Kwangwoon

University in 2010.



274 H. S. Song

and remain fixed throughout this paper, so we may write X instead of
(X,T ).

A homomorphism of flows is a continuous, equivariant map. A homo-
morphism whose range is minimal is always onto, and a homomorphism
whose domain is point transitive is determined by its value at a single
point.

A point transitive flow, (X, x0) consists of a flow X with a distin-
guished point x0 which has dense orbit. Espectially, (Z, z0) is a universal
point transitive flow if (a) (Z, z0) is point transitive and (b) if (X, x0)
is point transitive, then there exists a homomorphism from (Z, z0) onto
(X, x0).

A flow is said to be minimal if every point has dense orbit. Minimal
flows are also referred to as minimal sets. Espectially, (Z, T ) is a uni-
versal minimal set if (a) (Z, T ) is minimal and (b) if (X,T ) is minimal,
then there exists a homomorphism from (Z, T ) onto (X,T ).

The compact Hausdorff space X carries a natural uniformity whose
indices are the neighborhoods of the diagonal in X × X. Two points
x, x′ ∈ X are said to be proximal if, given any index α, there exists t ∈ T
such that (xt, x′t) ∈ α. The proximal relation in X, denoted by P (X,T ),
is the set of all proximal pairs inX. X is said to be distal if P (X,T ) = △,
the diagonal of X ×X and is said to be proximal if P (X,T ) = X ×X.
Given x ∈ X, we define P (x) = {x′ ∈ X | (x, x′) ∈ P (X,T )}.

A homomorphism π : X → Y is said to be proximal (resp. distal) if
whenever x, x′ ∈ π−1(y) then x and x′ are proximal (resp. distal).

Given a flow (X,T ), we may regard T as a set of self-homeomorphisms
of X. The enveloping semigroup of X, denoted by E(X), is the closure
of T in XX taken with the product topology. E(X) is at once a trans-
formation group and a sub-semigroup of XX . The minimal right ideals
of E(X), considered as a semigroup, coincide with the minimal sets of
E(X).

If E is some enveloping semigroup, and there exists a homomorphism
θ : (E, e) → (E(X), e) we say that E is an enveloping semigroup for X.
If such a homomorphism exists, it must be unique, and, given x ∈ X
and p ∈ E we may write xp to mean xθ(p) unambiguously.

Lemma 2.1. [4] If (X, x) and (Y, y) are point transitive flows, and E
is an enveloping semigroup for X and Y , there exists a unique homo-
morphism π : (X, x) → (Y, y) if and only if xp = xq for p, q ∈ E implies
yp = yq.
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Lemma 2.2. [4] Let E be an enveloping semigroup for X and let I
be a minimal right ideal in E. The following are true :

(1) The set J(I) of idempotent elements in I is non-empty.
(2) up = p whenever p ∈ I and u ∈ J(I).
(3) Iu is a group with identity u for each u ∈ J(I).
(4) Given x ∈ X, the following conditions are equivalent :

(a) x is an almost periodic point.
(b) xT = xI.
(c) x = xu for some u ∈ J(I).

Lemma 2.3. [4] Let E be an enveloping semigroup for X. Then for
any points x, x′ ∈ X, (1) and (2) are equivalent :

(1) (x, x′) ∈ P (X,T ).
(2) There exists a minimal right ideal I in E such that xp = x′p for

every p ∈ I.

3. Some results on homomorphisms of pointed minimal sets

Let βT denote the Stone-Cěch compactification of T . Then (βT, e) is
a universal point transitive flow. It is also clear that βT is an enveloping
semigroup for X, whenever X is a flow with acting group T .

Let M be a fixed minimal right ideal in βT and let J = J(M). We
choose a distinguished idempotent u ∈ J and letG denote the groupMu.
Given a minimal set X, we choose a point x0 ∈ Xu = {xu | x ∈ X}.
Under the canonical map (βT, e) → (X, x0), M is mapped onto X and
u onto x0. Thus (M,u) is a universal minimal pointed set. Given a
pointed minimal set (X, x0), we define the Ellis group of (X, x0) to be

G(X, x0) = {α ∈ G | x0α = x0}.
Clearly G(X, x0) is a subgroup of G.
Let π : (X, x0) → (Y, y0) be a homomorphism of pointed minimal

sets. Then there exist homomorphisms γ : (M,u) → (X, x0) and δ :
(M,u) → (Y, y0) such that π ◦ γ = δ.

Lemma 3.1. [3] Let π : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal sets. Then the following statements are true :

(1) G(X, x0) ⊂ G(Y, y0).
(2) G(X, x0) = G(Y, y0) if and only if π is proximal.
(3) π is distal if and only if for every y ∈ Y and p ∈ M such that

y0p = y, π−1(y) = x0G(Y, y0)p.
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Lemma 3.2. Let π : (X, x0) → (Y, y0) be a homomorphism of pointed
minimal sets. Then π is proximal if and only if π−1(y) ⊂ xJ for any
x ∈ π−1(y).

Proof. This follows immediately from [3, Proposition 4.1] and the fact
that if x, x′ ∈ π−1(y), then there exists u ∈ J such that x′ = xu.

Theorem 3.3. Let π : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal sets. Then the following conditions are equivalent :

(1) π is proximal.
(2) Suppose y ∈ Y . Then π−1(y) ⊂ xJ for any x ∈ π−1(y).
(3) Suppose y ∈ Y and that v ∈ J with yv = y. Then π−1(y)v is a

singleton.
(4) G(X, x0) = G(Y, y0).
(5) For any two points x, x′ ∈ X with (x, x′) almost periodic and

π(x) = π(x′), we have x = x′.
(6) Given any pair of homomorphisms γ : M → X and δ : M → X

with πδ = πγ, we have δ = γ.

Proof. That (1) and (2), (1) and (3), (1) and (4) are equivalent follows
from Lemma 3.2, [4, Lemma 2.5.8] and Lemma 3.1 respectively.

(1) implies (5). This follows from the fact that if a pair of points is
both proximal and almost periodic, the two points are identical.

(5) implies (6). Given homomorphisms γ : M → X and δ : M → X
with πδ = πγ we let γ(u) = x′ and δ(u) = x. Then (x′, x)u = (x′, x)
so (x′, x) is almost periodic. Now π(x′) = πγ(u) = πδ(u) = π(x). Thus
we get x′ = x, so that γ(u) = δ(u). Since M is minimal, it follows that
γ = δ.

(6) implies (1). Suppose x, x′ ∈ X and π(x) = π(x′). Since X
is minimal, there exists v ∈ J with xv = x. Let x′′ = x′v. Then
x′′v = (x′v)v = x′v. Now we define homomorphisms γ : M → X and
δ : M → X by γ(v) = x′′ and δ(v) = x. Then πγ(v) = π(x′′) = π(x′v) =
π(x′)v = π(x)v = π(x) = πδ(v) so πγ = πδ. By hypothesis, we get
γ = δ. Thus x′′ = γ(v) = δ(v) = x. Hence (x, x′) ∈ P (X,T ).

Remark 3.4. Notice that if X is proximal and minimal, then the
only endomorphism of X is the identity. Suppose that π : X → X is
a homomorphism and that X is proximal and minimal. By Theorem
3.3 (3), we get π−1(x)v is a singleton whenever x ∈ X and v ∈ J with
xv = x. Now let π−1(x)v = {x1}. Then there exists x′ ∈ π−1(x) with
x1 = x′v, and so x1v = x′v = x1. Hence (x, x1)v = (x, x1) so (x, x1) is
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almost periodic. Since (x, x1) ∈ P (X,T ), it follows that x1 = x. This
means that π−1(x) = {x}. That π is an identity automorphism follows
from the fact that X is minimal.

Proposition 3.5. Let π : (X, x0) → (Y, y0) be a homomorphism
of pointed minimal sets, and let y ∈ Y and p ∈ M with y0p = y. If
x0G(X, x0)p ⊂ x0J , then P (y0) = Y .

Proof. Suppose that y ∈ Y and that p ∈ M with y0p = y. Since
x0G(X, x0)p ⊂ x0J , it follows that for any α ∈ G(X, x0) there exists v ∈
J such that x0αp = x0p = x0v. Then y = y0p = π(x0p) = π(x0v) = y0v
whence (y, y0) ∈ P (Y, T ). Thus P (y0) = Y .

The proof of the following result are similar to that of Proposition 3.5.

Proposition 3.6. Let π : (X, x0) → (Y, y0) be a homomorphism
of pointed minimal sets, and let x ∈ X and p ∈ M with x0p = x. If
x0G(X, x0)p ⊂ x0J , then P (x0) = X.

Proposition 3.7. Let π : (X, x0) → (Y, y0) be a homomorphism
of pointed minimal sets, and let x ∈ X and p ∈ M with x0p = x. If
y0G(X, x0)p ⊂ y0J and π is proximal, then P (x0) = X.

Proof. Suppose that x ∈ X, p ∈ M with x0p = x. Given α ∈ G(X, x0)
we can pick v ∈ J such that y0αp = y0v. Then π(x) = π(x0αp) = y0αp =
y0v = π(x0v). But since π is proximal, it follows that (x, x0v) ∈ P (X,T ).
Hence there exists q ∈ M with xq = x0vq = x0q. This means that
(x, x0) ∈ P (X,T ). Thus P (x0) = X.

Remark 3.8. Notice that if in addition to the assumptions of Propo-
sition 3.6 and Proposition 3.7, E(X) contains the unique minimal right
ideal then X is proximal.

Theorem 3.9. Let π : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal sets, and let y ∈ Y and v ∈ J with yv = y. If π−1(y)v ⊂
x0J , then the following statements are true :

(1) x ∈ P (x0) for all x ∈ π−1(y)v.
(2) y ∈ P (y0).
(3) π−1(y)v is a singleton.

Proof. Suppose that y ∈ Y and that v ∈ J with yv = y. Since
π−1(y)v ⊂ x0J , it follows that for any x, x′ ∈ π−1(y)v, there exist
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x1, x2 ∈ π−1(y) and w1, w2 ∈ J such that x = x1v = x0w1 and x′ =
x2v = x0w2, whence x ∈ P (x0) by Lemma 2.3. That y ∈ P (y0) follows
from the fact that y = yv = π(x1)v = π(x) = π(x0w1) = y0w1. Also
(x, x′)v = (x1v, x2v)v = (x1v, x2v) = (x, x′) so (x, x′) is an almost peri-
odic point. But xw2 = (x0w1)w2 = x0(w1w2) = x0w2 = x′ implies that
(x, x′) ∈ P (X,T ). Hence x = x′ whence π−1(y)v is a singleton.

Proposition 3.10. Let π : (X, x0) → (Y, y0) be a homomorphism
of pointed minimal sets and y ∈ Y . Then π−1(y) =

∪
{π−1(y)v | v ∈

J and yv = y}.

Proof. Suppose that v ∈ J with yv = y and that x ∈ π−1(y)v. Pick
x1 ∈ π−1(y) with x = x1v. Then π(x) = π(x1)v = yv = y so x ∈ π−1(y).

Conversely, suppose x ∈ π−1(y). Since X is minimal, we have v ∈
J with x = xv. Then y = π(x) = π(x)v = yv and so x = xv ∈
π−1(y)v.

The proof of the following corollary is immediate from Theorem 3.9
and Proposition 3.10.

Corollary 3.11. Let π : (X, x0) → (Y, y0) be a homomorphism
of pointed minimal sets, and let y ∈ Y and π−1(y) ⊂ x0J . Then the
following statements are true :

(1) π−1(y) ⊂ P (x0).
(2) y ∈ P (y0).
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