J. Korean Math. Soc. 43 (2006), No. 2, pp. 425-443

GEOMETRIC AND APPROXIMATION
PROPERTIES OF GENERALIZED SINGULAR
INTEGRALS IN THE UNIT DISK

GEORGE A. ANASTASSIOU AND SORIN G. GAL

ABSTRACT. The aim of this paper is to obtain several results in
approximation by Jackson-type generalizations of complex Picard,
Poisson-Cauchy and Gauss-Weierstrass singular integrals in terms
of higher order moduli of smoothness. In addition, these gener-
alized integrals preserve some sufficient conditions for starlikeness
and univalence of analytic functions. Also approximation results
for vector-valued functions defined on the unit disk are given.

1. Introduction

For D = {2z € C; |2| < 1}, let us denote AD)={f:D - C; f
is continuous on D, analytic on D, f(0) = 0, f/(0) = 1}. Therefore if

J— o
f € A(D), then we can write f(2) = z+ 3. axz* for all z € D.
k=2

For f € A(D) and ¢ > 0, let us consider the generalized complex
singular integrals

BN == 5 [ [-'“'/fgjl (nﬂ)f(ze“““)} d,

n+1 n T zeiku
Que(N)(2) = = p—re - S (-1 ( “) 1) g,

2 arctg(lg—) P e u €2
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n+1 .
Wn,{(f)(z) = 56’1(_5) . Z(—l)k (’I’l ;: 1) f(zeiku)e_uZ/EZ du,
k=1 -

n+1 n +00 . .
Woe(f)(z) =— 201(5) -Z(—l)’“( Zl)/_ F(zeRw)e /€ gy,

k=1

zeD,neN CE = [ e~v/8 du, C*(¢) = I e~v"/¢* dy. Here
Py, ¢(f)(2) is called of Picard type, Qn ¢(f)(2) is called of Poisson-Cauchy
type and Wy (f)(2), Wy, ((f)(2) are called of Gauss-Weierstrass type.

In the very recent paper (3], [4], [5], classes of convolution complex
polynomials were introduced regarding rates, global smoothness preser-
vation properties and some geometric properties like preservation of co-
efficients’ bounds, positivity of real part, bounded turn, starlikeness,
convexity, univalence, were proved.

In the very recent paper [2], we have obtained similar results for
the complex singular integrals of Picard, Poisson-Cauchy, Gauss-Weier-
strass. ’

The aim of the present paper is to obtain some similar properties for
the generalized complex singular integrals defined above.

Approximation properties for vector-valued functions defined on the
unit disk also are presented.

2. Approximation properties

In this section we study the approximation and global smoothness
preservation properties.

THEOREM 2.1. (i) For z € D and £ € (0,1] we have
n+1

|Prg(£)(2) = 1)1 < [Z ("r l)k!} wns1(f3€)op,

k=0

fooa+ u)" e gy
fo e du ’

fooa+ u)n e’ gy
o e du

/g u+1 n+1
fOﬂ- ( ui—?-l du

ta,n“l(%)

Wy e (£)(2) — £(2)] <Crwns1(f;E)op, Cn =

3

[Wae(f)(2) — f(2)| <Crwns1(f;€)ap, Cp =

|Qne(£)(2) — f(2)] <K(n,§)wnta(f;)op, K(n,§) =

H
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where
wra1(f5Qop = sup{| AL F(e¥); [z} < 7, |ul < &}
(ii) For all § > 0, £ > 0 and n € N, we have
wi(Prg(£);8)5 (2" = Dwi(f;6)p;
wy (Wne(£);6)5 <2 = Dwi(f;0)p,
wi (Wi e(£):6)5 <@ = Do (f;0)5,
w1 (Qne(f); )5 <@ = Vwi(f;0)p:
Proof. (i) Let 2 € D, |z| = 1, £ > 0 be fixed. Because of the

Maximum Modulus Principle, it suffices to estimate | Py ¢(f)(2) — f(2)l,
for this |z| = 1, z = e*®. We get

£2) = Pagl )
@) [ e
= % e

+oo [ntl )
n zi [Z(_l)k (n —]: 1)} F(eiorhn)ye=lul/g gy,
£ |
1 +o0 .
— 2_5_/ (_1)n+1Az+lf(ezx>e—|u[/£ du,

where from

56 = PacDI < 5 |

1 [t u —u
:E/o wn+1<f;'£"€)0 e/t du
D
1 [t u\"
< wn+1(f;€)ap—/ (1 + —) e/ du
€ Jo £
= (reasoning exactly as in [6, p.254])

n+1
-3 <"_’: 1)k!wn+1(f;€)aD~

k=0

+o0
wnt1(f; I’MI)&)De_‘uVE du

As above, we obtain

f(2) ~ Whe(f)(2) = ?Cl(_ﬁ) /" (_‘l)n+1AZ+1f(eim)e_“2/§2 du,

-
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which implies

E’% /0 wni1(f;w)ape /¢ du

T n+1
C—é—)wnﬂ(f;ﬁ)ap/o [1 + g] e /8 du

(reasoning exactly as in [6, p.260])
< ol + u"Hlev’ du
- Joe ¥ du

|£(z) = Wae(£)(2)]

IA

-wnt1(f;€)aD-

Similarly,

1 +o0 . -
£2) = Wie)(&) = gz [ (~DPPATH (e du,

which implies as above

00 n+1
(&) = Wee(F() < =i (i o /0 [1 + E] e gy

C*(€) €
+oo 1+ g]ntt —u? d
< 0 [fooo Z]_uz deu uwn+1(f;€)(9D-

Finally, by the relation

du,

LT (1) AT ()

f(2) = Que(f)(2) = 2 _ u? £ &2

£ arctg %

it follows (taking into account [1, p.518] too)

|f(z)—Qn,§(f)(z)| < § A" wn+1(f;u)6D du

arctg § u? + &2

£ T [u ntl 1
<& - I . S
— arctg%wn+1(fa£)aD/() |:£ + ] ’I_L2 +§2 U

= K(n,&wn+1(f;8)op

which proves (i).
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(ii) Let |21 — 22| < 6, 21,22 € D. We have
|Pog(f)(21) — Prg(f)(22)]
400 n+1 1
< w (f |z1 ZQI ol 26/ (TLZ— )e_|u|/§ du

X k=1
n+1

= Z <n+ 1)w1(f )5
= (2"+1 — Dwi(f;0)5-
As above, we obtain

IW £(N)(21) = Wie(f)(2)]

n+1
7r n+1\ _ e
< 20 / ( )  du - wi(f;0)5

n+1

< Z(n+1)w1(f 0)p

= (2" = V(£ 8)p,
and analogously
(Wi e(F)(z1) = Wy e(£)(22)] < (2" = Dwr(£3 )5
Finally,

T k=1

1Qn,e(f)(21) — Qne(f)(22)]
1 n+1
Sgarctgg/_ﬂu2+§2 Z( )wlf&)

= (2n+1 - l)wl(f; 5)5

Passing in all the above inequalities to sup with |21 — 23] < &, we
obtain the required relations in (ii).

In what follows we extend the above results and some approximation
results in [2]-[3] to vector-valued functions. For this purpose first we
recall some known concepts and results.

DEFINITION 2.2 (see e.g. [7, pp.92-93]). Let (X, | - ||) be a complex
Banach space and f: D — X. We say that f is holomorphic on D if
for any z* € B; = {z*: X — C; z* linear and continuous, |||z*||| < 1},



430 George A. Anastassiou and Sorin G. Gal

the function g: D — C given by g(2) = z*[f(2)], is holomorphic on D.
(Here || - ||| represents the usual norm in the dual space X*).

We let us denote by A(D;X) the space of f: D — X which are
continuous on D and holomorphic on D.

Note that everywhere in this section (X,| - {|) will be a complex
Banach space.

THEOREM 2.3 (see e.g. [7, p.93)). If f: D — X is holomorphic on D,
then f(z) is continuous (as mapping between two metric spaces) and dif-

ferentiable (in the sense that exists f'(z) € C given by }lzin(l) I w —

f'(2)|| = 0) uniformly with respect to z in any compact subset of D.

THEOREM 2.4 (see e.g. [7, p.97]). If f: D — X is holomorphic on
D, then we have the Taylor expansion

_ <= f™(0)
h n!

f(z) Z", z€D,

n=0

where the series converges uniformly on any compact subset of D.
Also, the following result in Functional Analysis is well-known.

THEOREM 2.5. Let (X,| - ||) be a normed space over R of C and
denote by X* the conjugate of X. Then ||z| = sup{|z*(z)|; z* € X*,
llz*|| <1} for all z € X.

Now we are in a position to prove our results. We present

THEOREM 2.6. Let f € A(D; X), (X, | -||) a complex normed space.
(i) Define

1 m
2en/[2(n)2 + 1] J_,
where Ky(u) = [sin(n'u/2)/sin(u/2)]*, n’ = [n/2] + 1, and [7_ is the
classical Riemann integral for vector-valued functions. Then P,(f)(z) is

a polynomial in z of degree < n, with coeflicients in X, which satisfies
the estimate

I112) = PN < Can (fi7) W€D,

oD

Pa(f)(2) = f(ze™) Kn(u) du,

where

wp(f;8)ap = sup{||AL f(e”)||; |z| < m, [u| < 6}, p=2,3,...;
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(ii) Define the polynomials in z (with coefficients in X )

™ ptl
b = = [ Kur) 08P ) e
- k=1

where Ky (u) = A\, [sin(nu/2)/sin(u/2)]?", r is the smallest integer
which satisfies r > (p+2)/2 and the constants Ap , are chosen such that
J7 Kny(u)du =1. Then we have

1)) = FN < oo (£12) | s€ Dy

oD
(iii) Define
Va(£)(2) = 2L2n(£)(2) — La(£)(2),

L)) = g [ e Pufu) du

Fp(u) = [sin(nu/2)/ sin(u/2)]?. Then Va(f)(2) is a polynomial of degree
< 2n -1 in z, with coefficients in X which satisfies the estimate
[1£(2) = Va(£) ()| £ AEu(f)o(D), Vz€ D,

where Ep(f)oo(D) = inf{||f — P||5; P polynomial of degree < n in z,
with coefficients in X}, || fll5 = sup{|| f(2)||; z € D}.

(iv) Define P, ¢(f)(z) and W, ¢(f)(2) as in the Introduction but for
f € A(D; X). Then we have

1Qn,e(£)(2) = f(2)I| < K(n,O)wns1(f;€)op, Vz€D,£€(0,1], neN
and
[Whe(f)(2) = f(2)l < Crwnia(f;€)op, Vze D, £€(0,1], n€N,

where K (n,£) and C,, are as in Theorem 2.1, (i).
(v) If for f € A(D; X) we consider the operators

where

%N@ =% [ LE D, 2eD ¢>0,
We(f)(z) = \/1__ fze®)e e du, €D, £>0,

then we have

1Qe(N)(2) - £(2)] < 22U 8)ap

: , VzeD, £e€(0,1]
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and

(f;€)ap

IWe(£)(2) - £()]| < C=2 £ VeeD, g€ (0]

Proof. (1) By Theorem 2.4 and reasoning exactly as in [3, pp.419-420],
we first easily get that P, (f)(z) is a generalized complex polynomial of
degree < n in z, with coefficients in X.

Let 2* € By and define g(z) = z*[f(2)], g: D — C. By the estimate
in [3, p.423] we have

1
96) - Pulo)D)I < Can (), ¥zeD.
/oD
But A2g(e®®) = z*[A2 f(€%®)] and
|AZg(e®)] < [ll=*[]] - 1ALF () < AZF(e™)],
which immediately implies wo(g; d)sp < wa(f;d)ap, therefore
|z*[f(2) — Pa(f)(2)]| = |9(2) — Pa(9)(2)]
< C’wz(f;l) , VzeD, neN.
oD

n

Passing to supremum with z* € Bj, by Theorem 2.5 we get

17(2) = Pa(£)(2)]| < Cur (f; %)  VaeD.meN

oD

(i) Let g(z) = z*[f(2)], z* € B:. By [3, p.424] we have

90) = Fupl @)1 < Cpos (517)

which by similar reasonings gives the required conclusion in the state-
ment. Here z* commutes with the integral.

(iii) By the definition of E,(f)oo(D) as infimum, for any m € N, there
exists Pp,-polynomial of degree < n in z, with coefficients in X, such

that

En(f)oo(D) < |If = Prllp < En(feo(D) + ;11- m=12 ..
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Since it is easy to prove (as in e.g. [3, p-425]) that V,.(Pn)(2) = Pn(2),
Yz€ D, neNand
1£(2) = Va(£) @) = [1/(2) = Pm(2) + Va(Pr — F)(2)]
< 4)lf(2) — Pm(2)l

<4 En(f)w(ﬁ)+;11—], Vze D, m €N,

passing to the limit with m — oo, we get the desired relation. Here the
key relation is V,,(g9)(2) = z*[Va(f)(2)], for g(2) = z*[f(2)], =* € Bx.

(iv), (v) Let g(z) = z*[f(#)], * € B;. Since by Theorem 2.1, (i) we
have

|@ne(9)(2) — 9(2)| < K(n,§)wns1(g:8)op, Vz€D, neN, £€(0,1]

IWn,é(g)(z) - g(z)] < ann+1(g§§)6Da Vz € _D—a n€EN, (e (07 ]-]
by wnt1(9;€)ap < wnt1(f;€)ap, by
Qng(9)(2) = 2" [Qne(f)(2)], Waglg)(z) = 2" [Wae(f)(2)]

and by Theorem 2.5, as above we easily obtain the required results for
@ne and W (.

In the case of Q¢(f)(2) and W¢(f)(z) we take into account the esti-
mates in [2]

Cuws(g;
Qo)) ~ g(a)| < ZHEDD e p, e o),
Cuws(g;
Wel)) - (o) « Z2EDL viep e o)
and reasoning as above, the theorem is proved. U

3. Geometric properties

In this section we present some geometric properties of the generalized
complex singular integrals.
We present

o0
TuroreM 3.1. (i) If f(2) = 3. ax2” is analytic in D and contin-

k=0
uous in D, then Pn¢(f)(2), Wae(f)(2), Wy (f)(2) and Qne(f)(2) are
analytic in D and continuous in D for all £ > 0 and n > 2.
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Also, we can write

Pn,é(f)(z) = Z apbp,n(g)zp>

p=0
with
n+1
Nkt 1
bn® =30 (") g
Wae(£)(2) = apepn(£)27,
=0
with

n+1 -
eon(®) = g7 D (M) [ costhpu)e €

z) = Z aPc;,n(é)zpy
p=0

with

n+1 00
. (€)= 5;1@2(—1):%1 (n:l) _ /0 cos(hpw)e—"/€ du

C
k=1

Qn£ f) Zap pn(§

p=0
with
n41 .
T n+1Y) [7 cos(kpu)
dpn(8) = arctgg Z( ( )/0 u? + €2 du.
Here
S s n+1) 1
€)= 30 (") gy >0 orec .6
1 ntl rr1fn+1 —u2/e?
cl,n(g):c—,(5 ;( 1) +( N )/0 cos(ku)e du

>0, £€(0,&],
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n+1

* 1 vkl n+1 *° —u2/g2
c1,n(€)— _—C*(f) kzzzl( 1) + ( L )/0 cos(ku)e du
wl k+1 n+1 k262 /4
= Z(_l) + ( k >e_ &/ >0, for &€ (0,&,]
k=1
and
n+1 - k
din(€) = arcfg?Z(—l)’““ (nzl>/ = ZZd u>0, VEe (0,
k=1

where 0 < &, is independent of k and f(but may depend on n).
(ii) Denote by Sy = {f € A(D); |f'(2)| < M, Vz € D}, with M > 1.
Then, for all £ > 0, n € N we have

1
bl,n(f) Pn,{(SM) C SM(2n+1_1)/|b1,n(§)')

1

Cl,n(g) WTL,&(SM) = SM(2”+1*1)/|01,71(£)|7

1 *
¢ n(§) Weg(Sm) C Spanti-1y/iet ()1

1
d1n(E) Qn,e(Sm) C Smrti—1)/ldy n(€)l-

H

Proof. (i) Let f(2 Z apz?, z € D. For fixed z € D, we can write
p=0

3 o0 . .
f(ze) = 3~ a,e*PuzP and since |a,e?*P| = |a,]| for all u € R and the
=0
series Y apz® is convergent, it follows that the series Y a,e®*P¥zP is
p=0 p=0
uniformly convergent with respect to u € R. Therefore the series can be
integrated term by term (with respect to u), i.e.,

ntl n+ 1\ w— oo
Pog(f)(2) = Z ( f )Zapz”/oo ethPue=lul/E gy,
p=0 -
But .
(o o]
_ 1 cikmug—lul/€ gy,
28 J-co
1 o0

= —— [ [cos(kpu) + isin(kpu)]e~ /¢ du
2 J_oo
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1 o0
= ——/ cos(kpu)e /¢ du
0

§
1 e /[~ cos(kpu) + ksin(kpu)] |+
B K22 + g 0
1
S SN JUN S
£ §2k2p2 +1 §2k2p2 +1°

Therefore we can write

ad ntl n+1 1
PagN)(2) = 3 _ape- [—ZH)'“( : ) ERE 1

p=0 k=1
oC
= Zapbp,n(é)zpa
p=0
with
n+1
+1 1
— -1 k+1 n -
bpn(€) ;( ) ( k £2k2p2 + 1
for all z € D.

For the continuity property, let z € D and 2, € D, n € N, with

lim z, = 2. We have
m—00

n+1
|Prg(£)(2m) — Prg(f)(20)] < o (n;cr 1)

/+oo If(zmeiku) N f(zgeiku)le_lul/f du

< (2" = Dwi(f; |zm — 20))5-

Passing to limit with m — oo, we get that P, ¢(f)(2) is continuous on
D.

The proofs for the other operators Wye(f) (2), Wj(f)(2), and
Qn,e(f)(z) are similar. The formulas for b1, (§), c1n(€) and d1 (&) are
immediate from above.

Also, since C*(€) = f0°° e v /& gy = ffooo eV dy = % (see e.g. [9,
p.228]) and

5 . e—k2€2/4

oocos ku)e /6 dy = /oo cos(kév)e™" dv = —
| costien) € [ costhtn v
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we get
+
Cinfe) = Y- ap (M 1) e
k=1
n+1
~ 3 (- 1)k+l(";‘1)e—k2£2/4.
k=1
Now, by
n+1 n+1
o=t =St (M) s e (M),
k=0 k=1

: ! k+1(n+1
it follows 192—:1(—1) (") =1
Then, since

n+1
n-+1 1
bl,n(§ Z( 1 k+1< k >€2k2 41

k=1

and
n+1

« n4+1\ _, 2.

cin(® = S (M e
k=1

are obviously continuous functions of £ € R and

n+1
bin(0) = & 0(0) = S (-1 (T 1) =1,
' ! ; ( k )

there exists &, > 0 such that by (&) > 0, ¢f ,,(§) > 0, V€ € (0,&,]. Also,
c1,n(€) and dy () are obviously continuous functions of £ € R\ {0}.

Since e
iy T
C) = / e/ gy = f/ e dv
0 0
and
i 2 /2 /€ 2
/ cos(ku)e™ /¢ du = f/ cos(kév)e™ dv,
0 0
we get

lim [/Ow cos(ku)e /€ du/C({)]

€10
/€

w/€
= lim cos(l«:fv)e““2 dv/ lim/ e dv
€10 Jo £l0 Jp
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/€ L ) 0
= lim cos(kév)e™ dv
im [ costhen)e™ o/ [
| /g ,
= 2\/Elim/ cos(k&v)e™ dv.
£lo Jo

By the substitution {év = u we get

/€ T
/ 1- cos(lefv)]e““2 dv = 1 / 1- cos(ku)]e‘(“/§)2 du,
0 §Jo

ie.,

/€ 2 00 2
/ cos(kév)e™ dv—/ eV dv
0 0

/€ , e,
/ cos(kév)e™ dv—/ eV dv
0 0

/€ 00
/ eV dv — / eV dv
0 0

< / {1 - cos(ku){ﬁ’le‘(“/s)2 du +
0

<

+

/€ 00
/ e~ dv — / e dul .
0 0

Since
k 2k%u?  k%u?
|1 — cos(ku)| = 2sin? 2u < 4” = __._2u ,
we get
2
|1 — cos(ku)|¢te~(W/8)* < %u2g‘le—(u/5)2,
where
u2 u2 g .
2¢-1,—(u/€)? _ . e 5 _
%I{)lu 6 lglﬁ)l e(u/ﬁ) 1 m 2?“361142/52 lélﬂ)l €u2/€2 0’

ie., |1— cos(ku)]f’le“(“/5)2 —% 0, uniformly with respect to u € [0, 7]
(We applied I'Hospital’s rule). This immediately implies

. 7T/§ _u2/€2 oo __,U2
151151 cos(ku)e du/C(€) = 2¢/7 eV dv=1.
0 0
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Therefore,

1 T 272
1\, T cos(ku)e /€ du

. €)= 1)+ n+ lim 29

lim ¢1.n () >.(-1) ( k)€l C(¢)

k=1

n+1

k=1

which implies that there exists &, > 0 such that ¢1 (&) > 0, V€ € (0,&].
In the case of di»(§), since

& 1 1
T~ [T _d
arctg g fo — -:-LuZ % f07r/§ F%)I

/7’ cosku /”/5 cos k{v
0 u2+§2 "€ S

w /& cos(kév) cos(kEv)
™ v
lim 3 / cos ku du = lim Q—’%———
€10 arctg T ¢ Jo

and

we get

v2+1
/€ cos(kév
llmglo / ~v_§ﬁv dv
- 00 _dv
0 341

/¢
lim / cos(kév) dv

2
T Elo v2+1
2
i

/°° dv
0 1J2+1~

Here, as in the above case, we write

/"/5 cos(kév) dv_/“’ dv
o vi+1 o v2+1

/¢ /¢
/ coz(kfv) do — / 2dv 4
0 ve+1 0 ve 414

/& (1 — cos(k€v)]
/0 v2+1

|

/”/5 dv /°° dv
0 'U2 —+ 1 0 ’U2 + 1

/”/5 dv _/°° dv
o v:+1 Jy v?+41|

dv +
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But
/’r/5 [1 — cos(k&v)] do — / (1 —cos ku) du
0 v2 +1 N 5
_ ™ 2sin? k2“
5 o 1+ (%)
k2 (™ u? 1

I

— L du
2Jo € 14(2)

k2 ™ u2
B ?/0 ‘@ + &2 du

Denote 0 < ge(u) = 552%7 < €. We obviously have 151&)1 ge(u) = 0,

uniformly with respect to u € [0, 7], which implies

/€ oo
zli / cos(k€v) do — g/ dv _1
T €10 v2+1 TJo v?+1

i n+1
1 = — k+1 =
lglff)ldl,n(f) => (-1 < ) 1>0,

k
k=1

Therefore,

which implies that there exists &, > 0 such that d; () > 0 for all
£ € (0,&)

Obviously, we can choose the same &, > 0 for all the four operators

Prg(f), Wne(f), Wy (f) and Qne(f)-
(ii) Let

f(2)=2z+> axz* € ADD), |f'(2)| < M, Vz€D.
k=2
Since ag = 0, by (i) we get
Prg(f)(0) = Wre(£)(0) = W7 e(£)(0) = @ne(f)(0) = 0.

Also, since a; = 1, by (i) we get

1 / _ 1 oW
i@ DO = Sy nelN)O)
= LW (DN0) = — - QL (H(O)

Cin (‘S)
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which implies that

1 _1 1 . 1
@ g g Waslh) g g Oned)
€ A(D).
Also, by
400 n+1
Frel)z) = —515— e/t Z (n N 1) I (ze®*) etk du,
we obtain
1 M n+1 o fn41 —_ M_(Zf_l_—_lz
e < o () =S

ie.,
1
'Pn 2)e S bl .
b1,,(£) £(N=) M(2r+1-1)/[b1,n(€)]

The proofs for the other operators are similar, which proves the the-
orem.

REMARKS. 1) By e.g. [8, p.111, Exercise 5.4.1], f € Sy, M > 1,
implies that f is univalent in {2z € C; |2} < 47} C D. Theorem 3.1 (i)
shows that f € Sys implies that P, ¢(f)(2) is univalent in

{ze(c; |z|<M%7i—(1§1iﬁ}c{zeC; iz]<%}cD,

since by Theorem 3.1 (i), we have

n+1
+1 1
IGIESY <n L ) 1

k=1

n+1
<3S ("TH) = o1, v =01
k = , VD= U, 1,....

k=1

Similar conclusions hold for the operators Wne(f)(2), W ((f)(2) and

Qne(f)(2), by replacing above b1,(§) by c1n(§), €1 4(§) and dyn(£),
respectively.

2) For any fixed n € N, let us denote

Bl,n = inf{lbl,n(§)|;€ S (0,§n]}, Cl,n = inf{‘¢1,n(§)‘§€ S (O,En]},
C;.n = infﬂc){.n(g)];é S (ngn]}v Dl,n = inf{'dl,n(f)hf € (07571]}
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If Bin, Cim, Ciyy D1n > 0, then by Theorem 3.1 (i), the following
properties hold:

f € Sar implies that P, ¢(f) is univalent in {z €C; 7 < M—(ﬁl—ﬂtl—)
for all z € (0,4&,),

f € Sas implies that W, ¢(f) is univalent in {z € C; |2| < W—T}
for all € € (0,&,],

f € Sum implies that W .(f) is univalent in {z€C;lz| < Wg%r—"_ﬁ
for all £ € (0,&,],

f € Su implies that Q,, ¢(f) is univalent in {z eC;lz| < M—(%—Jrl—:l—)
for all £ € (0,&,).

Therefore, it remains to calculate (for each fixed n € N), Byn, Cin,
C’f’n, Dj n, to check if By, >0, C1, > 0, Cl*’n > 0, problems which are
left to the reader as open questions.

3) It would be interesting to investigate for other geometric properties
of the operators in this paper.
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