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k-TH ROOTS OF p-HYPONORMAL OPERATORS

BHAGWATI P. DuGcaL, IN Ho JEON®) | anD EunciL Ko

ABSTRACT. In this paper we prove that if T is a k-th root of a p-
hyponormal operator when T is compact or T™ is normal for some
integer n > k, then T is (generalized) scalar, and that if T is a k-th

root of a semi-hyponormal operator and have the property o(T)

is contained in an angle < 27" with vertex in the origin, then T is

subscalar.

1. Introduction

Let H and K be complex Hilbert spaces and let £L(H, K) denote the
space of all bounded linear operators from H to K. If H = K, we write
L(H) in place of L(H, K).

A bounded linear operator S on H is called scalar of order m if it
has a spectral distribution of order m, i.e., if there is a continuous unital
morphism of topological algebras

o :C™(C) — L(H)

such that ®(z) = S, where as usual z stands for the identity function on
C and Cg§*(C) stands for the space of compactly supported: functions on
C, continuously differentiable of order m, 0 < m < 0o. An operator is
subscalar if it is similar to the restriction of a scalar operator to a closed
invariant subspace.

Let du(z), or simply du, denote the planar Lebesgue measure. Let D
be a bounded open disc in C. We shall denote by L?(D, H) the Hilbert
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space of measurable functions f : D — H, such that

1o = ( [ser du(2)>% <o

The space of functions f € L?(D, H) which are analytic functions in D
(i.e., f = 0) is defined by

A%(D,H) = I*(D,H) N O(D, H),

where O(D, H) denotes the Fréchet space of H-valued analytic functions
on D with respect to uniform topology. A2(D, H) is called the Bergman
space for D. Let us define a Sobolev type space, denoted W2(D, H).
W2(D, H) will be the space of those functions f € L?(D,H) whose
derivatives 8f, 52 f in the sense of distributions still belong to L?(D, H).
Endowed with the norm || f||3,> = Z?:o 16 £113, o, W?(D, H) becomes a
Hilbert space contained continuously in L?(D, H). Now, for f € C3(C),
let M; denote the operator on W?(D, H) given by multiplication by f.
This has a spectral distribution of order 2, defined by the functional
calculus
@y : G3(C) — LIW?(D, H)), 2m(f) = Mj.

Therefore My is a scalar operator of order 2. Consider a bounded open
disk D which contains ¢(T) and the quotient space

(1.1) H(D) = W¥(D, H)/(T - 2)W2(D, H)

endowed with the Hilbert space norm. We denote the class of a vector
f or an operator A on H(D) by f, respectively A. Let M, be the
operator of multiplication by z on W2(D, H). As noted above M, is a
scalar of order 2 and has a spectral distribution ®. Let S = M Since
(T — z)W?2(D, H) is invariant under every operator My, f € C§(C), we
infer that S is a scalar operator of order 2 with spectral dlstrlbutlon 3.
Consider the natural map V : H — H(D) defined by VA =1® 1 ® h, for
h € H, where 1 ® h denotes the constant function identically equal to
h. In [11], Putinar showed that if " € L(H) is a hyponormal operator
then V is one-to-one and has closed range such that VT = SV, and so
T is subscalar of order 2.

An operator T € L(H) is said to be p-hyponormal, 0 < p < 1, if
(T*T)P > (TT*)P where T* is the adjoint of T. If p =1, T' is hyponormal
and if p = %, T is called semi-hyponormal. Semi-hyponormal operators
were introduced by Xia (see [12]) and there are many works on general
p-hyponormal operators ([1], [3], [5], [6], [9]).
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LOWNER-HEINZ’S INEQUALITY. Let A,B € L(H) be A> B >0 and
p € (0,1]. Then
' AP > BP.

This inequality gives the following implications:

1
hyponormality = p-hyponormality (§ <p<l)

= semi-hyponormality

. 1
=" p-hyponormality (0 < p < —2-)

It is well known that all the above implications are strict(see [6] and
[12]).

In this paper we prove that if T is a k-th root of a p-hyponormal
operator when 7' is compact or T™ is normal for some integer n > k,
then T is (generalized) scalar, and that if T is a k-th root of a semi-
hyponormal operator and has the property o(T') is contained in an angle
< 2m/k with vertex in the origin, then T is subscalar. These results
extend [8, Theorem 4.3].

2. Results

THEOREM 2.1. Let T be a k-th root of a p-hyponormal operator.
If T is compact or T™ is normal for some integer n > k, then T is a
(generalized) scalar operator.

Proof. First, we claim that T* is normal. If T' is compact, then that
is straightforward, since T* is compact and a compact p-hyponormal
operator is normal ([5, Theorem 2]). If 7" is normal for some integer
n > k, then there exists an n-nilpotent operator Ty and an operator 7
which is quasi-similar to a normal operator N with o(T1) = o(N) such
that T = To & T} [7, Theorem 3.1]. Consider 7% = T§¥ @ TF. Clearly, T§
is nilpotent. Since the only quasi-nilpotent p-hyponormal operator is the
zero operator, T§ = 0. Let X be a quasi-affinity such that TFX = XN k.
Applying the Putnam-Fuglede theorem for p-hyponormal operators (3,
Theorem 7]), it follows that TF is normal. Hence T* is normal. Now it
follows from [2] and [7, Remark, p.141] that T is a (generalized) scalar
operator. O
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COROLLARY 2.2. Let T be a k-th root of a p-hyponormal operator.
If T is compact or T™ is normal for some integer n > k, then T has
hyperinvariant subspaces.

Proof. Since T is a (generalized) scalar operator by Theorem 2.1, T

is decomposable. Hence T' has hyperinvariant subspaces. a

THEOREM 2.3. Let T be a k-th root of a semi-hyponormal operator
and have the property o(T') is contained in an angle < 2 /k with vertex
in the origin. Then T is subscalar of order 2.

We need the following lemmas to prove Theorem 2.3.

LEMMA 2.4. ([11, Proposition 2.1]) For every bounded disk D in C
there is a constant Cp, such that for an arbitrary operator T € L(H)
and f € W%(D, H) we have ’

1T~ Pl p < Cp (IT = 28, p + | = 281, ) »

where P denotes the orthogonal projection of L?(D, H) onto the Berg-
man space A%(D, H).

LEMMA 2.5. ([9, Lemma 4]) Let T' be a semi-hyponormal. Then for
a z € C and a sequence f, € L>(D,H)

lim [|(T = )falep =0 = lim (T = 2)"fall2,p = 0.

Proof of Theorem 2.3. Consider a bounded disk D which contains
o(T) and H(D) as in (1.1). Then we define the map V : H — H(D) by

Vh=@(z1®h+(T_z)W2(D,H)),

where 1 ® h denotes the constant function sending any 2 € D to h. As
mentioned in section 1, to prove Theorem 2.3 it suffices to show that V
is one-to-one and has closed range.

Let h,, € H and f,, € W2(D, H) be sequences such that

(2.) T (T = 2)fa +18 hullws = 0.
Then equation (2.1) implies

(2.2) lim (T — 2)8* full2p =0 for i=1,2.
n—o0
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From (2.2), we get

lim ||[(T* = 2)8 fullap =0 for i=1,2.

n—00
Since T* is semi-hyponormal, by Lemma 2.5 we have
(2.3) lim [[(T** — 2%)8 full2,0 = 0.

n—o0
Now we claim that
(2.4) lim ||(T — 2)*8" fnll2,0 = 0.
n—oo

Indeed, since T — z is invertible for z € D \ o(T'), the equation (2.2)

implies that _
Jim_ (18" fall2,pro(r) = 0.
Therefore, .
lim (T = 2)*0" full2,0\o(r) = 0-

Also, since o(T') is contained in an angle < %c’—’ with vertex in the origin,
it is clear from the equation (2.3) that

lim (T - 2)*0"full2,p =0.
n—oo
Thus Lemma 2.4 and equation (2.4) imply
lim (I - P)fnll2,0 =0,
n—oo
where P denotes the orthogonal projection of L?(D, H) onto A%(D, H).
Then by (2.1)
Jim (7 = 2)Pf +18 hallap = 0.
Let I be a curve in D surrounding o(T"). Then for z € T
lim ||Pfn(2) + (T — 2)"(1 ® hy)|| = 0, uniformly.
n—oo
Hence

lim =0.
n—oo

L /F Pfa(2)dz + hn

27

But by Cauchy’s theorem,

/Fan(z)dz =0.

Thus lim,,—,o hn = 0. Hence V is one-to-one and has closed range. This
completes the proof. O
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COROLLARY 2.6. Let T be a k-th root of a semi-hyponormal operator
and have the property that o(T') is contained in an angle < 27 /k with
vertex in the origin. If o(T) has interior in the plane, then T has a
non-trivial invariant subspace.

Proof. The corollary follows from Theorem 2.3 and [4]. O

We say that an operator T — z on the space O(D, H) has Bishop’s
property (B) if T — z is one-to-one and has closed range for every disc
D. Since every subscalar operator has Bishop’s property (3) ([10]), from
Theorem 2.3 we have the following.

COROLLARY 2.7. Let T be as in Corollary 2.6. Then T has Bishop’s
property (8).

Does Theorem 2.3 hold for k-th roots of arbitrary p-hyponormal op-
erators? A partial answer is given by the following corollary.

COROLLARY 2.8. Let T be the k-th root of a p-hyponormal operator

A, 0 < p < 3, such that 0 ¢ o(|A|2). If o(T) is contained in angle

< 2w /k with vertex in the origin, T is subscalar of order 2.

Proof. Letting A have the polar decomposition A = U|A|, it is seen
that the operator § = |A|2U|A]z is a semi-hyponormal operator such
that S = |A|2A|A|"%. Since S = |A|2T*|A|~2 = (|A|2T|A|"3)*, S
has a k-th root T, = |A|2T|A|~ 7 with spectrum contained in an angle
< 2w /k with vertex in the origin. Hence Ty, and so also T, is subscalar
of order 2 by Theorem 2.3. a

References

[1] A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations
Operator Theory 13 (1990), 307-315.

[2] C. Apostol, Spectral decomposition and functional calculus, Rev. Roumaine
Math. Pures Appl. 13 (1968), 1481-1528.

[3] B. P. Duggal, Quasi-similar p-hyponormal operators, Integral Equations Oper-
ator Theory 26 (1996), 338-345.

[4] J. Eschmeier, Invariant subspaces for subscalar operators, Arch. Math. 52 (19-
89), 562-570.

[5] M. Fujii, C. Himeji, and A. Matsumoto, Theorems of Ando and Saito for p-
hyponormal operators, Math. Japonica 39 (1994), 595-598.

[6] T. Furuta, Invitation to linear operators, Taylor & Francis, London and New
York, 2001.



k-th roots of p-hyponormal operators 577

[7] F. Gilfeather, Operator valued roots of abelian analytic functions, Pacific J.
Math. 55 (1974), 127-148.

[8] M. Kim and E. Ko, Square roots of hyponormal operators, Glasg. Math. J. 41
(1999), 463-470.

[9] E. Ko, On p-hyponormal operators, Proc. Amer. Math. Soc. 128 (2000), 775~
780.

[10] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory,
London Math. Soc. Monogr. (N.S.) 2000.

[11] M. Putinar, Hyponormal operators are subscalar, J. Operator Theory 12 (1984),
385-395.

[12] D. Xia, Spectral Theory of Hyponormal Operators, Birkhiuser Verlag, Boston,
1983.

BHAGwATI P. DuGcaL, 8 REDwWOOD GROVE, NORTHFIELDS AVENUE EALING, LON-
DON W5 4SZ, UNITED KINGDOM
E-mail: bpduggal@yahoo.co.uk

IN Ho JEON, DEPARTMENT OF MATHEMATICS, EWHA WOMEN’S UNIVERSITY, SEOUL
120-750, KOREA

RECENT ADDRESS: DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVER-
SITY, SEOUL 151-747, KOREA

E-mail: jih@math.ewha.ac.kr

EunGiL Ko, DEPARTMENT OF MATHEMATICS, EwHA WOMEN’S UNIVERSITY, SEOUL
120-750, KOREA
E-mail: eiko@ewha.ac.kr



