k-TH ROOTS OF p-HYPONORMAL OPERATORS

BHAGWATI P. DUGGAL, IN HO JEON(*), AND EUNGIL KO

ABSTRACT. In this paper we prove that if T is a k-th root of a p-hyponormal operator when T is compact or T^n is normal for some integer n>k, then T is (generalized) scalar, and that if T is a k-th root of a semi-hyponormal operator and have the property $\sigma(T)$ is contained in an angle $<\frac{2\pi}{k}$ with vertex in the origin, then T is subscalar.

1. Introduction

Let H and K be complex Hilbert spaces and let $\mathcal{L}(H,K)$ denote the space of all bounded linear operators from H to K. If H=K, we write $\mathcal{L}(H)$ in place of $\mathcal{L}(H,K)$.

A bounded linear operator S on H is called scalar of order m if it has a spectral distribution of order m, i.e., if there is a continuous unital morphism of topological algebras

$$\Phi: C_0^m(\mathbb{C}) \longrightarrow \mathcal{L}(H)$$

such that $\Phi(z) = S$, where as usual z stands for the identity function on \mathbb{C} and $C_0^m(\mathbb{C})$ stands for the space of compactly supported functions on \mathbb{C} , continuously differentiable of order m, $0 \le m \le \infty$. An operator is subscalar if it is similar to the restriction of a scalar operator to a closed invariant subspace.

Let $d\mu(z)$, or simply $d\mu$, denote the planar Lebesgue measure. Let D be a bounded open disc in \mathbb{C} . We shall denote by $L^2(D, H)$ the Hilbert

Received May 3, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 47B20, 47A15.

Key words and phrases: k-th roots of p-hyponormal operator, subscalar operator.

(*) This work was supported by Korea Research Foundation Grant(KRF-2001-050-D0001).

space of measurable functions $f: D \to H$, such that

$$||f||_{2,D} = \left(\int_{D} ||f(z)||^{2} d\mu(z)\right)^{\frac{1}{2}} < \infty.$$

The space of functions $f \in L^2(D, H)$ which are analytic functions in D (i.e., $\bar{\partial} f = 0$) is defined by

$$A^2(D,H) = L^2(D,H) \cap \mathcal{O}(D,H),$$

where $\mathcal{O}(D,H)$ denotes the Fréchet space of H-valued analytic functions on D with respect to uniform topology. $A^2(D,H)$ is called the Bergman space for D. Let us define a Sobolev type space, denoted $W^2(D,H)$. $W^2(D,H)$ will be the space of those functions $f \in L^2(D,H)$ whose derivatives $\bar{\partial} f, \bar{\partial}^2 f$ in the sense of distributions still belong to $L^2(D,H)$. Endowed with the norm $\|f\|_{W^2}^2 = \sum_{i=0}^2 \|\bar{\partial}^i f\|_{2,D}^2$, $W^2(D,H)$ becomes a Hilbert space contained continuously in $L^2(D,H)$. Now, for $f \in C_0^2(\mathbb{C})$, let M_f denote the operator on $W^2(D,H)$ given by multiplication by f. This has a spectral distribution of order 2, defined by the functional calculus

$$\Phi_M: C_0^2(\mathbb{C}) \longrightarrow \mathcal{L}(W^2(D,H)), \ \Phi_M(f) = M_f.$$

Therefore M_f is a scalar operator of order 2. Consider a bounded open disk D which contains $\sigma(T)$ and the quotient space

(1.1)
$$H(D) = W^{2}(D, H) / \overline{(T - z)W^{2}(D, H)}$$

endowed with the Hilbert space norm. We denote the class of a vector f or an operator A on H(D) by \widehat{f} , respectively \widehat{A} . Let M_z be the operator of multiplication by z on $W^2(D,H)$. As noted above, M_z is a scalar of order 2 and has a spectral distribution Φ . Let $S \equiv \widehat{M}_z$. Since $\overline{(T-z)W^2(D,H)}$ is invariant under every operator $M_f, f \in C_0^2(\mathbb{C})$, we infer that S is a scalar operator of order 2 with spectral distribution $\widehat{\Phi}$. Consider the natural map $V:H\longrightarrow H(D)$ defined by $Vh=\widehat{1\otimes h}$, for $h\in H$, where $1\otimes h$ denotes the constant function identically equal to h. In [11], Putinar showed that if $T\in \mathcal{L}(H)$ is a hyponormal operator then V is one-to-one and has closed range such that VT=SV, and so T is subscalar of order 2.

An operator $T \in \mathcal{L}(H)$ is said to be p-hyponormal, $0 , if <math>(T^*T)^p \geq (TT^*)^p$ where T^* is the adjoint of T. If p=1, T is hyponormal and if $p=\frac{1}{2}, T$ is called semi-hyponormal. Semi-hyponormal operators were introduced by Xia (see [12]) and there are many works on general p-hyponormal operators ([1], [3], [5], [6], [9]).

LÖWNER-HEINZ'S INEQUALITY. Let $A, B \in \mathcal{L}(H)$ be $A \geq B \geq 0$ and $p \in (0, 1]$. Then

$$A^p \geq B^p$$
.

This inequality gives the following implications:

$$\begin{split} \text{hyponormality} &\Rightarrow \ p\text{-hyponormality} \ (\frac{1}{2}$$

It is well known that all the above implications are strict(see [6] and [12]).

In this paper we prove that if T is a k-th root of a p-hyponormal operator when T is compact or T^n is normal for some integer n > k, then T is (generalized) scalar, and that if T is a k-th root of a semi-hyponormal operator and has the property $\sigma(T)$ is contained in an angle $< 2\pi/k$ with vertex in the origin, then T is subscalar. These results extend [8, Theorem 4.3].

2. Results

THEOREM 2.1. Let T be a k-th root of a p-hyponormal operator. If T is compact or T^n is normal for some integer n > k, then T is a (generalized) scalar operator.

Proof. First, we claim that T^k is normal. If T is compact, then that is straightforward, since T^k is compact and a compact p-hyponormal operator is normal ([5, Theorem 2]). If T^n is normal for some integer n > k, then there exists an n-nilpotent operator T_0 and an operator T_1 which is quasi-similar to a normal operator N with $\sigma(T_1) = \sigma(N)$ such that $T = T_0 \oplus T_1$ [7, Theorem 3.1]. Consider $T^k = T_0^k \oplus T_1^k$. Clearly, T_0^k is nilpotent. Since the only quasi-nilpotent p-hyponormal operator is the zero operator, $T_0^k = 0$. Let X be a quasi-affinity such that $T_1^k X = XN^k$. Applying the Putnam-Fuglede theorem for p-hyponormal operators ([3, Theorem 7]), it follows that T_1^k is normal. Hence T^k is normal. Now it follows from [2] and [7, Remark, p.141] that T is a (generalized) scalar operator.

COROLLARY 2.2. Let T be a k-th root of a p-hyponormal operator. If T is compact or T^n is normal for some integer n > k, then T has hyperinvariant subspaces.

Proof. Since T is a (generalized) scalar operator by Theorem 2.1, T is decomposable. Hence T has hyperinvariant subspaces.

THEOREM 2.3. Let T be a k-th root of a semi-hyponormal operator and have the property $\sigma(T)$ is contained in an angle $< 2\pi/k$ with vertex in the origin. Then T is subscalar of order 2.

We need the following lemmas to prove Theorem 2.3.

LEMMA 2.4. ([11, Proposition 2.1]) For every bounded disk D in \mathbb{C} there is a constant C_D , such that for an arbitrary operator $T \in \mathcal{L}(H)$ and $f \in W^2(D, H)$ we have

$$\|(I-P)f\|_{2,D} \le C_D \left(\|(T-z)^* \bar{\partial} f\|_{2,D} + |(T-z)^* \bar{\partial}^2 f\|_{2,D} \right),$$

where P denotes the orthogonal projection of $L^2(D, H)$ onto the Bergman space $A^2(D, H)$.

LEMMA 2.5. ([9, Lemma 4]) Let T be a semi-hyponormal. Then for a $z \in \mathbb{C}$ and a sequence $f_n \in L^2(D, H)$

$$\lim_{n \to \infty} \|(T - z)f_n\|_{2,D} = 0 \implies \lim_{n \to \infty} \|(T - z)^* f_n\|_{2,D} = 0.$$

Proof of Theorem 2.3. Consider a bounded disk D which contains $\sigma(T)$ and H(D) as in (1.1). Then we define the map $V: H \to H(D)$ by

$$Vh = \widehat{1 \otimes h} \left(\equiv 1 \otimes h + \overline{(T-z)W^2(D,H)} \right),$$

where $1 \otimes h$ denotes the constant function sending any $z \in D$ to h. As mentioned in section 1, to prove Theorem 2.3 it suffices to show that V is one-to-one and has closed range.

Let $h_n \in H$ and $f_n \in W^2(D, H)$ be sequences such that

(2.1)
$$\lim_{n \to \infty} \|(T-z)f_n + 1 \otimes h_n\|_{W^2} = 0.$$

Then equation (2.1) implies

(2.2)
$$\lim_{n \to \infty} \|(T-z)\bar{\partial}^i f_n\|_{2,D} = 0 \quad \text{for} \quad i = 1, 2.$$

From (2.2), we get

$$\lim_{n \to \infty} \|(T^k - z^k)\bar{\partial}^i f_n\|_{2,D} = 0 \quad \text{for} \quad i = 1, 2.$$

Since T^k is semi-hyponormal, by Lemma 2.5 we have

(2.3)
$$\lim_{n \to \infty} \| (T^{*k} - \bar{z}^k) \bar{\partial}^i f_n \|_{2,D} = 0.$$

Now we claim that

(2.4)
$$\lim_{n \to \infty} \|(T-z)^* \bar{\partial}^i f_n\|_{2,D} = 0.$$

Indeed, since T-z is invertible for $z\in D\setminus \sigma(T)$, the equation (2.2) implies that

$$\lim_{n \to \infty} \|\bar{\partial}^i f_n\|_{2, D \setminus \sigma(T)} = 0.$$

Therefore,

$$\lim_{n\to\infty} \|(T-z)^* \bar{\partial}^i f_n\|_{2,D\setminus\sigma(T)} = 0.$$

Also, since $\sigma(T)$ is contained in an angle $<\frac{2\pi}{k}$ with vertex in the origin, it is clear from the equation (2.3) that

$$\lim_{n\to\infty} \|(T-z)^*\bar{\partial}^i f_n\|_{2,D} = 0.$$

Thus Lemma 2.4 and equation (2.4) imply

$$\lim_{n\to\infty} \|(I-P)f_n\|_{2,D} = 0,$$

where P denotes the orthogonal projection of $L^2(D, H)$ onto $A^2(D, H)$. Then by (2.1)

$$\lim_{n\to\infty} \|(T-z)Pf_n + 1 \otimes h_n\|_{2,D} = 0.$$

Let Γ be a curve in D surrounding $\sigma(T)$. Then for $z \in \Gamma$

$$\lim_{n \to \infty} ||Pf_n(z) + (T - z)^{-1} (1 \otimes h_n)|| = 0, \text{ uniformly.}$$

Hence

$$\lim_{n\to\infty} \left\| \frac{1}{2\pi i} \int_{\Gamma} Pf_n(z) dz + h_n \right\| = 0.$$

But by Cauchy's theorem,

$$\int_{\Gamma} P f_n(z) dz = 0.$$

Thus $\lim_{n\to\infty} h_n = 0$. Hence V is one-to-one and has closed range. This completes the proof.

COROLLARY 2.6. Let T be a k-th root of a semi-hyponormal operator and have the property that $\sigma(T)$ is contained in an angle $< 2\pi/k$ with vertex in the origin. If $\sigma(T)$ has interior in the plane, then T has a non-trivial invariant subspace.

Proof. The corollary follows from Theorem 2.3 and [4].

We say that an operator T-z on the space $\mathcal{O}(D,H)$ has Bishop's property (β) if T-z is one-to-one and has closed range for every disc D. Since every subscalar operator has Bishop's property (β) ([10]), from Theorem 2.3 we have the following.

COROLLARY 2.7. Let T be as in Corollary 2.6. Then T has Bishop's property (β) .

Does Theorem 2.3 hold for k-th roots of arbitrary p-hyponormal operators? A partial answer is given by the following corollary.

COROLLARY 2.8. Let T be the k-th root of a p-hyponormal operator A, $0 , such that <math>0 \notin \sigma(|A|^{\frac{1}{2}})$. If $\sigma(T)$ is contained in angle $< 2\pi/k$ with vertex in the origin, T is subscalar of order 2.

Proof. Letting A have the polar decomposition A=U|A|, it is seen that the operator $S=|A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}$ is a semi-hyponormal operator such that $S=|A|^{\frac{1}{2}}A|A|^{-\frac{1}{2}}$. Since $S=|A|^{\frac{1}{2}}T^k|A|^{-\frac{1}{2}}=(|A|^{\frac{1}{2}}T|A|^{-\frac{1}{2}})^k$, S has a k-th root $T_o=|A|^{\frac{1}{2}}T|A|^{-\frac{1}{2}}$ with spectrum contained in an angle $<2\pi/k$ with vertex in the origin. Hence T_o , and so also T, is subscalar of order 2 by Theorem 2.3.

References

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integral Equations Operator Theory 13 (1990), 307–315.
- [2] C. Apostol, Spectral decomposition and functional calculus, Rev. Roumaine Math. Pures Appl. 13 (1968), 1481–1528.
- [3] B. P. Duggal, Quasi-similar p-hyponormal operators, Integral Equations Operator Theory 26 (1996), 338-345.
- [4] J. Eschmeier, Invariant subspaces for subscalar operators, Arch. Math. 52 (19-89), 562-570.
- [5] M. Fujii, C. Himeji, and A. Matsumoto, Theorems of Ando and Saito for p-hyponormal operators, Math. Japonica 39 (1994), 595-598.
- [6] T. Furuta, Invitation to linear operators, Taylor & Francis, London and New York, 2001.

- [7] F. Gilfeather, Operator valued roots of abelian analytic functions, Pacific J. Math. 55 (1974), 127-148.
- [8] M. Kim and E. Ko, Square roots of hyponormal operators, Glasg. Math. J. 41 (1999), 463-470.
- [9] E. Ko, On p-hyponormal operators, Proc. Amer. Math. Soc. 128 (2000), 775–780.
- [10] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Math. Soc. Monogr. (N.S.) 2000.
- [11] M. Putinar, Hyponormal operators are subscalar, J. Operator Theory 12 (1984), 385–395.
- [12] D. Xia, Spectral Theory of Hyponormal Operators, Birkhäuser Verlag, Boston, 1983.

Bhagwati P. Duggal, 8 Redwood Grove, Northfields Avenue Ealing, London W5 4SZ, United Kingdom

E-mail: bpduggal@yahoo.co.uk

IN HO JEON, DEPARTMENT OF MATHEMATICS, EWHA WOMEN'S UNIVERSITY, SEOUL 120-750, KOREA

RECENT ADDRESS: DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-747, KOREA

E-mail: jih@math.ewha.ac.kr

EUNGIL KO, DEPARTMENT OF MATHEMATICS, EWHA WOMEN'S UNIVERSITY, SEOUL 120-750, KOREA

E-mail: eiko@ewha.ac.kr