Bull. Korean Math. Soc. 40 (2003), No. 3, pp. 521-529

GEOMETRIC PROBABILITY
IN THE MINKOWSKI PLANE

WEON-BAE KIM AND YONG-IL KiMm

ABSTRACT. In this paper, we get the measure of strips and lines in
the Minkowski plane M? that meet a fixed compact convex body in
M?. From this we also investigate the probability that strips and
lines meet a fixed compact convex body in M2

1. Introduction

In 2], G. D. Chakerian computed the measure of lines that meet a
fixed curve, compact convex body in the Minkowski plane. The study
on integral geometry was initiated by W. Blaschke. Many problems
treated in integral geometry had their roots in geometric probability
([4]). Now many problems in integral geometry for the Minkowski spaces
are open. In this paper, we have some integral formulas for the strip
in the Minkowski plane. We also get the measure of strips and lines
in the Minkowski plane M? that meet a fixed compact convex body in
M?2. From this we get the probability that strips and lines meet a fixed
compact convex body in M2

2. Basic concepts for the Minkowski plane

The Euclidean plane E? can be viewed as a normed space with an
arbitrary norm || - ||. Then the norm || - || makes E? a new metric space
(M2,]| - ||) called the Minkowski plane. Let K = {x € M? : |x|| < 1}
be a unit ball in M?2. And we denote the boundary of K by bdK. We
shall assume throughout that bdK is sufficiently differentiable and has
positive finite curvature everywhere. Then bdK is a centrally symmetric
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closed convex curve. Assume that bdK has enclosing Euclidean area .
Now we parametrize bdK as follows:

We write the equation of bdK as t = t(¢), 0 < ¢ < 27. Then ||—t_>|| =
1, where T is the vector from the origin O to the point corresponding
to t(4) on bdK. And the sectorial area from the positive z-axis to T is
2011 -

From now on we do not distinguish ¢ from ¢. Now we define n(¢)
by n(¢) = %42, 0 < ¢ < 2r. We denote by bdK* the curve with
equation n = n(¢), 0 < ¢ < 2m. Then bdK™* is the polar dual of

bdK with respect to the Euclidean unit circle, rotated through 7. The
function A = A(¢), 0 < ¢ < 2x, defined by dzgg’) = _% is called
the Minkowskian curvature of bdK* at a point where the tangent has

direction t(4)([2]). For x = (z1,22), ¥ = (y1,%2) in M? we denote
[x,¥] = 192 — z2y1. Put
A(p,t(¢)) = (0,00) x [0,2m) U0 X [0,7)

and let £(M?) be the set of all straight lines on M?. Then there is a
one-to-one correspondence T from L£(M?) onto A(p, t(¢)) as follows:

If G € £(M?) is a line parallel to the direction t(¢) and the Euclidean
area of the parallelogram with the sides #(¢) and x € G is p, then

T(G) = (p, t(4)).

Here the equation of G is:
[t(¢),x] = p.
Then the density of G(see [2]) is
dG = X" (¢)dpdé.

3. Main results

By a strip B C M? we mean the closed region between two parallel
straight lines. The position of B can be determined by the coordinates
p and t(¢) of its midparallel. So the density for sets of strips is

dB = \"1(¢)dpdep.

For a compact convex body U with the origin in its interior, the
Minkowski length L(bdU) of bdU is defined by

L(bdU) = /

—T

™

(hur (0) + B5(6)) p(6 + ge)da,
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where € = £1, hy(-) is a support function of U, and p(-) is a support
function of K*([3]). From now on we denote the Minkowski length by
L(-). We have the following theorem.

THEOREM 1. For a compact convex body U C M? and a strip B of
breadth Br, we have

1
/ dB = L(bdU) + = BrP(K*),
BAU£ 2

where P(-) is the Euclidean perimeter.

Proof. B meets U if and only if the midparallel of B meets the parallel
body U 1Br of U at distance %Br. Let G be a midparallel of B. For

the equality meUlB 294G = L(bdU1p,), let x(s) be the equation of
3 T

de% pr With Minkowski arc length s. Now we can assume that x is on
the intersection of bdU. g, with G of the equation [t(¢),x] = p. Let
2

U = % be the Minkowski unit tangent vector at x(s). Then
1 g _
W [ a = 5[ [, T @dsds
GUy , 40 bdU) 5, JO

= / ds
b} g,

= L(bdUsp,).

In the equation (1) we can assume that % moves from the direction #(0)
to the direction ¢t(m) without loss of generality. Thus we get

[oas = [ 4G
BNU#0 GNUy 5, #0

= [ (hy )+ oy, ) 90+ G

Uiy
- QBT

/1
= / (§Br + hy(0) + h’ﬁ(e)) p(0 + ge)dﬁ
-7
1
= L(bdU) + EBT'P(K*).
This completes the proof. O

From the Theorem 1 we have immediately the following corollary.
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COROLLARY 1. For a fixed point x € M? and a strip B of breadth
Br, we have

/ dB = L BrP(K?).
x€B 2

Now we compute the integral of some geometric quantity on the set
of strips that meet a fixed compact convex body in M?. First, we have
the following theorem.

THEOREM 2. Let U be a compact convex body in M? and let B be
a strip of breadth Br. Then

/ A(BAU)YB = L BrP(K*)A(D),
BNU#0 2

where A(-) is the area.

Proof. Let G; and G be any lines in M2. Now we consider the
integral

/ dG1dG2dB.
G1NG2NBNU#D

Fixing the lines G; and G2 and then integrating over the strips B, gives

/ dG1dGodB
G1NG2NBNU#D

/ / / dBdGodG
G1r‘IU7é@ Gzﬂ(GlﬁU)7£0 Bﬂ(G1ﬁGzﬂU)#@

- lerpr) / / dG2dG1
2 G1NU#D J Gan(G1NU)#D

= BTP(K*) /G i L(Gl M U)dGl
BrP(K*)A(K*) A(U).

The second equality follows from Corollary 1 immediately. On the other
hand, first fixing the strip B and then integrating over the lines G; and
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G gives
/ dG1dGodB
G1NG2NBNU#D
= / / / dG2dG1dB
BNU#D J G1N(BNU)#£D J Gan(G1NBNU)#D
= 2/ / L(GiNnBNU)dG1dB
BNU#D J GiN(BNU)#D
= 2A(K") / A(BAU)B.
BNU#Q
From this we have the result. O

Now we investigate the measure of the set of lines and strips that
meet a fixed compact convex body U.

THEOREM 3. If By and B, are independent strips in M? of breadth
Bry, Brag, respectively that meet a fixed compact convex body U and the
line G € L(M?) meets U, then the probability that ByNBaNGNU # §
is

P(K*)A(K*)A(U)[Bry + Bry] + ; P2(K*)L(bdU)Br1Br

Prob = L(bdU)[L(bdU) + 1Bry P(K*)|[L(bdU) + 3 BraP(K")]

Proof. We compute the measure of By, By, and G such that By N
BonGNU #0.

/ dGdB;dBs
B1NBaNGNU#D

/ / / dBydGdB;
BinU#£D J GN(B1NU)#0 J BaN(B1NGNU )#0

_ / / 2L(GN By NU) + > BroP(K*)|dGdB,
BinU#0 JGN(B1nU)#0 2

= / [2A(K*)A(Bl N U) + 1B’."zj:)(ff*)L(bd(Bl n U))]dBl
B1NU#D 2

From Theorem 2 we have

/ 2A(K*)A(B1 N U)dB, = P(K™)A(K*)A(U)Br+.
BinU#D



526 Weon-Bae Kim and Yong-II Kim

Now for a line G € £(M?) and a strip B, consider the measure of G and
B such that GNBNU # 0.

/ dBdG = / / dGdB
GNBNU#D BNU#B JGN(BNU)#0
- / L(bd(B N U))dB.
BNU#D

On the other hand,

/ dBdG = / / dBdG
GNBNU#D GNU#B J BN(GNU)#0

_ / 2L(GNU) + - BrP(K*)|dG
GNU#D 2

= 2A(K")A(U) + 3 BrP(K*)L(bdU).
Thus we have

/ L(bd(B N U))dB = 24(K*)A(U) + - BrP(K*)L(bdU).
BNU#£D 2

So we have

/ dGdB1dB,
B1NBaNGNU#D

1
= P(K*)A(K*)A(U)[Bry + Bro] + ZPQ(K*)L(de)BrlBrg.
From this we get the result easily. M|

If B; and Bs are strips of breadth Br, then we have the following
corollary.

COROLLARY 2. Let U be a compact convex body in M? and let B,
and By be strips of breadth Br. Then for a line G € L(M?) we have

/ dGdB1dBy
B1NBaNGNUZD

= 2P(K*)A(K*)A(U)Br + %P2(K*)L(de)(Br)2.
In Theorem 3 we have

/ L(bd(B N U))dB = 2A(K")A(U) + = BrP(K*)L(bdU).
BNU#0 2

Now we consider the measure [ L*(bd(B N U))dB.
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THEOREM 4. Let U be a compact convex body in M? and let B be
a strip of breadth Br. Then we have

/ L2(bd(BNU))dB
BNU#D

= [2A(K*)A(U) + %BrP(K*)L(de) L(bd(BNT)).
Proof. Let G1, G2 be any lines in £(M?). Then we have

/ dG1dGodB
G1NBNU#B,G2NBNU#D

/ / dG1dGedB
BNU#D JG1N(BNU)#0,G2N(BNU)F#0

= / / dG / dGodB
BNU#G JG1N(BNU)#£D GaNBNU#)
= / L2(bd(BNU))dB.
BNU#0
On the other hand,

/ dG1dGodB
G1NBNU#0,GaNBNU#B

= / G, / dBdG.
G1ﬂBﬁU7ﬁ0 GgﬁBﬂU;é@

Here we get

/ dBdG,; = / / dBdGo
G2NBNU# G2NU#0 J BN (G2nU)#D

_ / [QL(G2 NU) + 2 BrP(K*)| dGy
GaNU#D 2

= 2AKMAU) + %BrP(K*)L(de).
Thus we have

/ dG1dGedB
G1NBNU#D,G2NBNU#D

_ LMd(BNDY) [2A(K*)A(U) + %BrP(K*)L(de)} .

This completes the proof. (N
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THEOREM 5. Let U be a compact convex body in M? and let B be
a strip of breadth Br. Then for n > 1 we have

Jpow 9 L (6d(B N U))dB
Jonwz9 L (6d(B N U))dB

Proof. Let G1,Ga,- -+ ,Gyp be any lines in £L(M?). Thenfor1 <i < n,

we have
/ dG1dGs - --dGrdB
G,-anU;é(Z)

_ / / dG1dGy - - - dG,dB
BNU#D JG;N(BNU)#D

= / / G- / dGrdB
BNU#D JG1N BmU);é(Z) GnNBNU#D

_ / L™(bd(B N U))dB.
BNU#B

On the other hand,

/ dG1dGsy---dG,dB
G;NBNU#D

_ / 4Gy - - / dGy dBdG,,
G1NBNU#D Gn_1NBNU#D GnNBNU#D

L™ Y(bd(B NT)) [2A(K*)A(U) + %BrP(K*)L(de)} :

= L(bd(B N T)).

This completes the proof. O
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