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INTEGRAL BASES OVER p-ADIC FIELDS

ALEXANDRU ZAHARESCU

ABSTRACT. Let p be a prime number, Q, the field of p-adic num-
bers, K a finite extension of Q,, K a fixed algebraic closure of K
and C, the completion of K with respect to the p-adic valuation.
Let E be a closed subfield of C,, containing K. Given elements
ti,...,t, € E for which the field K(t1,...,t.) is dense in F, we
construct integral bases of E over K.

1. Introduction

Let p be a prime number, Q, the field of p-adic numbers, K a finite
extension of Q,, K a fixed algebraic closure of K and C, the completion
of K with respect to the p-adic valuation. Given a finite extension L of
K, it is known (see Serre [10], p. 57) that there are elements § € L for
which the elements 1,6,62,...,09 ! with d = [L : K], form an integral
basis of L over K. In that case one has Og[f] = Oy, where Og,Or,
denote the rings of integers in K and respectively L. If an element
a € L is given and we only know that « is a generator of L over K, that
is L = K(a), then an integral basis of L over K can be constructed by
following the procedure from [8], Remark 4.7. This basis is defined in
terms of the so-called saturated distinguished chains for «, which have
been introduced in [8], and studied also in [1], [6] and [7]. The shape
of such a basis may be useful in practice, for instance it has been used
in [5] in order to show that the Ax-Sen constant vanishes for deeply
ramified extensions (in the sense of Coates-Greenberg [4]). In this paper
we consider the case when several elements ai,...,a, € L are given
such that K(aq,...,0,) = L, and one wants to find an integral basis of
L over K. We work in the following more general context. Let E be a
closed subfield of C,, not necessarily finite over K, and let t1,...,t, be
elements of E such that the field K(¢;,...,t,) is dense in E. Then we
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show how one can construct, in terms of ¢1,...,¢,, an integral basis of
E over K. In case r = 1 such a basis has been constructed in [1]. For
a general r, we associate to any t = (t1,...,t,) € C;, certain sequences
(Mi(Xq,... ’X’”))ke/\/’(t) of polynomials in r variables X3, ..., X, with
coefficients in K, and call them normalized sequences for t over K.
Then we show that for any such normalized sequence of polynomials, the
sequence (Mk (t1,... ’t"))keN(t) forms an integral basis of F over K. We

also consider the effect of the action of the Galois group Galcont(Cp/K)
on our bases. If t1,...,t, € C, and 0 € Galent(Cp/K), then the
r—tuples (¢1,...,t) and (o(t1),...,0(t;)) produce the same normalized
sequences of polynomials. We will show that a converse also holds, and
in order to prove that result we first establish a criterion which uses the
p-adic valuation to identify the conjugates of a given element t € Cj.

2. Admissible polynomials

In what follows K will be a fixed finite extension of Q,. Denote by
v the p-adic valuation on C,, normalized by v(p) = 1. Let 7x be a
uniformising element of K. If e(K/Q,) denotes the ramification index
of K over Qp, then v(mg) = JK—}Q? Next, let us fix an order < on N”
which makes IN” a well ordered set. One such possible order is to put
m < n provided that my +---+m, <nj; + -+ n,, and to choose the
lexicographical order for those r—tuples m for which the total degree
my + - - - + m, is the same.

Another class of examples of orders is obtained as follows. Let n =
(m,.-.,nr), where n1,...,n, are positive real numbers, linearly indepen-
dent over Q. Define the n—degree of m to be

(2.1) deg, m =mmy + -+ + nmy.

Here all the r—tuples m € N” have distinct degrees. Then set m < n if
and only if deg, m < deg, n.

Let us fix an order on N” as above. Arrange the elements of N” in
increasing oder,

(2.2) mo<m<m<---<mg<- -,

where the inequalities in (2.2) are with respect to this fixed order. Let
¢ be the induced monotonic one-to-one map from N to N7, that is,
(k) = my for any k € N. Consider the ring of polynomials in r variables
Xy,..., X, over K. If k € N and ¢(k) = (mq,...,m,) € N", we define
the degree of the monomial X" --- X to be deg(X7™ --- X™) = k.
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Thus for each £ € N there exists exactly one monomial of degree k.
For any nonzero polynomial P(Xy,...,X,) € K[X1,...,X,] we define
deg P(X1,...,X,) to be the largest of the degrees of its monomials. We
put deg0 = —oo. One easily sees that

(2.3) deg(P) =0 if and only if 0 # P is constant,

(2.4)
deg(P + Q) < max{deg P,deg Q}, with equality if degP # degQ,

and
(2.5) deg(cP) =deg P for any 0 #c € K.

The leading coefficient in a polynomial P(Xj,...,X,) is the coefficient
corresponding to the monomial of highest degree in P(X,...,X,). A
polynomial is said to be monic if its leading coefficient is 1.

In what follows we work with a fixed order on N" as above. Let
t = (t1,...,tr) € Cj and let k € N. We define an admissible polynomial
of degree k for t over K to be any monic polynomial P(Xjy,...,X,) €
K[X;,...,X,] of degree k such that

(2.6) v(P(t1, .. tr)) 2 0(Qt, ..., 1)),

for any monic polynomial Q(Xu,...,X;) € K[X1,...,X,] of degree k.
A sequence (fi),n With the property that for any k, f; is an admissible
polynomial of degree k for t over K will be called an admissible sequence
of polynomials for t over K. The existence of admissible sequences of
polynomials for any t € Cj, follows from the next lemma.

LEMMA 1. Fix a finite extension K of Q, and an order on N" as
above. Then, for any t € C}, and any k € N there exists an admissible
polynomial of degree k for t over K.

Proof. Let t = (t1,...,t,) € C, and k € N. Denote
(2.7)
Y (t) = sup{v(G(t1,...,tr)) : G € K[Xy,...,X;], G monic,deg G = k}.
Here v (t) € (—00,00]. In order to finish the proof of the lemma we
need to show that the supremum on the right side of (2.7) is attained.
Let (pm)mEN be a strictly increasing sequence of real numbers with
limy,—,00 pm = Yk(t). For any m, denote

(2.8)
Fm ={f € K[Xi,...,X,]: f monic, deg f = k,v(f(t1,...,t)) > pm}-
Evidently one has the inclusions Fo 2 F; 2 -+ 2 Fp, 2 - -. Since pr, <

Yk(t) for any m, it follows that all the sets F,,, are nonempty. For any
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nonzero polynomial f(X;,...,X;) € K[X1,...,X,], let b(f) € Z denote

the smallest integer number for which the polynomial W%f ) f(Xa,..., Xy)
belongs to Ok|[X1,...,X,]. Note that if f(Xi,...,X,) is monic then
b(f) > 0. Next, for any m € N we set

(2.9) b = min{b(f) : f(X1,...,X;) € Fn}.

One clearly has 0 < by < by <--- < b, < --- . We claim that there is a
natural number m* such that

(2.10) bm*:bm*+1:"'=bm:"'

In order to prove the claim, let us choose for any m € N a polyno-
mial fn(Xi,...,Xy) € Fp for which the minimum is attained on the
right side of (2.9). Thus b(fn) = bm. Denote gm = 75 fm, s0 that
9m € Og[X1,...,X;] and g, is primitive for any m. Let us assume
that b,, — oo as m — oo. Consider the sequence of polynomials
(gm)meN. Since O is compact, there exists a subsequence (gmj)j €N
of (gm)m eN for which the sequence of coefficients corresponding to any
given monomial is convergent. In the limit we obtain a polynomial
9(X1,...,Xy) € Og[Xy,...,X,], which is also primitive, and hence it is
not the zero polynomial. Note that the leading coefficient of g¢,, equals
77?5", which goes to zero as m — o0, by the above assumption that
lim,_,00 by, = 00. Therefore the degree of g(Xi,...,X,) will be strictly
smaller than k. As a consequence, for any m € N the polynomial
hm = fm — 7r]_(b'" g will be monic and of degree k. On the other hand,
along the subsequence (mj)jeN we have gm;(t1,-..,tr) — g(t1,-..,t).
Thus v(gm, (t1,.--,tr)) = v(g(ts, ..., %)) as j — co. Since

b bmj

(211) U(g'mj(tlv <o ’tr)) = U(TrK ]fm(th oo >t7‘)) 2 m + Pm;s

and since the right side of (2.11) goes to infinity as j — oo, we deduce
that g(t1,...,%) = 0. Therefore

(2.12) 0(hm(ts, - 80)) = 0l 1)) 2 prmy
for any m € N. Choose now a j large enough so that each coeflicient of

the polynomial (gmj (X1,...,X,) —g(Xq,... ,Xr)) is divisible by ng.

b —1 . .
Then 7y ? Ay, = ;I—I;(gmj —g) € Ok[X1,...,X,]. This contradicts

the definition of by, since h.,; is monic, of degree k, and by (2.12) it
follows that A, € Fy,,. This proves (2.10). Next, from (2.10) and
the fact that 7—%n* Oy is compact, it follows that if we choose for each
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m > m* a polynomial f,, € F,, satisfying b(fm) = by = bmx, there is
a subsequence ( fm].)j eN of ( fm)m eN which converges to a polynomial
f € K[Xy,...,X,]. This polynomial f is monic, of degree k, and one has
My oo frm; (t1,- -5 tr) = f(t1, ..., tr). Since v(fm,(t1,. .. :tr)) 2 pm, for
any j, we see that v(f(t1,...,tr)) = vk(t), and this completes the proof
of the lemma.

3. Integral bases

Let us fix K and an order on N” as before, and choose a t =
(t1,...,tr) € Cp. Let ( i) wen D€ an admissible sequence of polyno-
mials for t over K, and let v,(t) be defined by (2.7). Thus

(31) U(fk(tla"')tr)) :’Yk:(t)a
for any k € N. Denote
(3.2) N(t) ={k € N: y(t) < oc}.

Thus fi(t1,...,t,) # 0 for any k € N(t), and fi(t1,...,t-) = O for any
k € N\ N(t). Next, for any k € N (t) let I = [e(K/Qp) - W(t)] € Z,
where [-] denotes the integer part function. Then set

(3.3) Mip(Xy,..., X,) = T fu( X1, ..., Xp) € K[X1,..., X, ).

Note that v(Mg(t1,...,t)) > 0 while v(%Mk(tl, ...y tr)) <0, for any
k € N(t). We call the sequence (M (X1, ... ’X’"))keN(t) a normalized

sequence of polynomials for t over K. Here the set N (t) may be finite
or infinite. Let E C C,, denote the completion of the field K (t4,...,t,),
and O = {z € E : v(z) > 0} the ring of integers of E. We show that
for any normalized sequence (Mk(Xl, ... ’XT))keN(t) for t over K, the

sequence (Mjy(ty,... i) keN(t) forms an integral basis of F over K.

THEOREM 1. Let K be a finite extension of Qp and fix an order on
N" which makes N" a well ordered set. Choose at = (t1,...,t,) € C,
and let E denote the closure of the field K(t1,...,t;) in Cp. Then for
any normalized sequence of polynomials (Mk(Xl, . ’XT))keN(t) for t
over K, the sequence (Mk(tl, e ,t,«))
E over K. More precisely:

(i) For any y € E there exists a unique sequence (Ck)keN(t) in K, with
cr — 0 as k — oo, such that y = 3~ cxMy(t1,...,t,).

KEN(£) forms an integral basis of
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(ii) Let y € E, y = > ck Mk(t1,...,tr), with ¢y € K for all k € N(t)
and ¢ — 0 as k — co. Then v(y) = ming v(cg Mg (t1, ..., t)).

(iii) Let y € E. Theny € Og if and only if y = Y, ckx Mi(t1,. .., tr)
with ¢ € Ok for all k € N(t) and ¢, — 0 as k — .

Proof. Tt is easy to see that (iii) follows from (i), (ii) and the fact
that for any k¥ € N(t) and ¢ € K, one has cMy(ti,...,t.) € O if
and only if ¢ € Og. We now proceed to prove (ii). Let y € E, y =
Sk euMi(ty, ..., tr) with ¢, € K for all k € N(t) and ¢, — 0 as k — oo.
We need to show that

4 = i Mi(t1,...,t)).
(3.4) v(y) kg\lfa)v(% Kt ..o t)

Note that the minimum is attained on the right side of (3.4) since
v(cg) — o0 as k — oco. Let d € N (t) be the largest natural number for
which v(cgMy(ty, ..., t)) = ming v(exMg(t1,...,tr)). We clearly have
v(y) > v(caMa(t1,...,t.)). Let us assume that v(y) > v(cgMy(t1,.. .,
tr)). Write y in the form y = y; +y2, where y1 = >, ccMi(t1,. .., tr)
and y2 = > o g My (t1, ..., tr). Since v(cpMy(ty,. .., 1)) > v(cgMy(ts,
..., tp)) for any k > d, it follows that v(y2) > v(cgMy(t1,...,tr)). Thus
v(y1) > min{v(y),v(y2)} > v(cgMy(t1,...,t;)). Consider the polyno-
mial
la
(3.5) G(X,...,X,) = Z—j 3 euMi(X1,..., X,) € K[X1,..., X,).
k<d

Let us remark that G(X3,..., X,) is monic, of degree d, and

it

3.6)  w(G(ts,...,t)) = v(c—jyl) > o(nSMy(ta, ... 1),

This contradicts the fact that wlIgMd(Xl, ..., Xr) is an admissible poly-
nomial of degree d for t over K. Therefore (3.4) holds true, and this
proves (ii). It remains to prove (i).

Let y € E. We want to find a sequence (ck)ke/\/(t) in K with ¢ — 0
as k — oo, such that y = >, cxMk(t1,...,t,). By Theorem 7 from [2]
we know that the ring K[tq,...,t,] is dense in the closure E of the field
K(t1,...,t;). Choose a sequence of polynomials (Prn(X1,...,X,)), N
in K[X3,...,X;] such that

(3.7 P, (t1,...,t,) >y as m — oo.

For each m € N denote d,,, = deg Pn(X1,...,X,). Let (fk)keN be an
admissible sequence of polynomials for t over K, with fi(Xy,...,X;) =
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7% My (X1, ..., Xy) for any k € N(t), while for k ¢ A/ (t) we allow f;, to
be any admissible polynomial of degree k for t over K. Next, we write
each polynomial F,, as a finite linear combination of our admissible
sequence of polynomials ( fk)

keN?
dm
(3.8) Pn(X1,.., X)) =Y amifi(X1,..., X,).
=0
Since fj(t1,...,t,) =0 for j ¢ N(t), from (3.8) we derive
(3.9) Pplty,...ote) = > amjfi(t1,. .. te).
0<j<dm
JEN(Y)

We put (3.9) in the form

(3.10) Pty te) = Y emiMj(t,... t),
JEN(Y)

for any m € N, where ¢ ; = Wlljgamd‘ for 5 < dy, and ¢ = 0 for
J > dm. The sequence (Pm(t1,.-.,t)), o being convergent, by (ii)
it follows that for each j € N (t) the sequence (Cm’j)meN is a Cauchy
sequence in K. Let ¢; = limy 0 Cmj € K. We claim that ¢; — 0
as j — oo. Indeed, fix an € > 0 and choose an m. € NN such that
v(y — Pp(t1,...,tr)) > % for any m > me. Then for any j € N(t) and
any m,n > m, we have on one hand

(3.11) V(Pm(tts . t) — Pa(ty, ... )
2 min{v(y - Pm(tl’ s ,t,-)),’U(y - Pn(tl, ce 7t'r))} >

o=

i

and on the other hand we have

(3.12) V(P (t1,- - tr) — Pa(ti, ... tr))
= kér}&?t)v((cm,k = cn i) Mg(t1, ... t))
< v(emj — Cnyj) +U(M;(t, ..., tr))
< v(emy —cnyj) + —1——-
e(K/Qp)
Combining (3.11) and (3.12) we find that
1 1

(3.13) V(emg = eng) > = = =

e(K/Qp)
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If we let n — co while keeping j and m fixed, from (3.13) it follows that

1 1

(3.14) v(emj —¢j) > — — ——,
( J .7) € B(K/Qp)
for any m > m, and any j € AN (t). In particular, for m = m, and
J > dp, one has ¢, ; = 0, and (3.14) implies
1 1

3.15 v(e) > - — 0,
(319 )2 EQ,)
for any € > 0 and any j > dp,.. This shows that ¢; — 0 as j — oco. Let
us consider the element z € E given by

(3.16) 2= > Mt ).
kEN (t)

Using (ii) it follows from (3.14) that for any € > 0 and any m > m, one
has
(3.17)

v(Pp(ta, ... tr)—2) Zjégl\}l('lt;)v((cm’j—Cj)Mj(tl, cente)) 2

e(K/Qp)

Therefore Pp,(t1,...,t;) — z as m — oo. Comparing this with (3.7)
we see that z = y, and (3.16) gives the desired expression of y in terms
of our sequence (Mk(tl, e ,tr)) keN ()" Lastly, the uniqueness of such

1 1
€

an expression follows easily from (ii). This completes the proof of the
theorem. 0

4. Conjugates and normalized sequences of polynomials

We keep the notations from previous sections. Denote as usual the
group of continuous automorphisms of C, over K by Galcont(Cp/K). If
t=(t1,...,t;), t' =(,...,th) € C;, and if there exists 0 € Galcont(Cp/
K) such that o(t;) = t; for any j € {1,...,7} we say that t and t’ are
conjugate over K. Note that if t and t’ are conjugate over K then
N(t) = N(t'), and a sequence (My(X,... ’XT))keN(t) is a normalized
sequence of polynomials for t over K if and only if it is a normalized
sequence of polynomials for t’ over K. We ask whether a converse of
this statement also holds. In order to provide an answer to this question
we first prove the following lemma, which generalizes the criterion from
Remark 3.6 of [1].
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LEMMA 2. Let t = (t1,...,t),t' = (t],...,t,) be elements of Cj.
Then t and t' are conjugate over K if and only if v(P(t1,...,t)) =
v(P(t},...,t.)) for any polynomial P(X1,...,X,;) € K[X1,...,X;].

Proof. If t = (t1,...,t),t' = (t},...,t.) are conjugate over K then
evidently P(ti,...,%¢.) and P(t],...,t.) are conjugate over K, and so
they have the same valuation. Conversely, let us assume that t =
(tr,.. -, tr),t' = (t1,...,t.) € Cparesuch that v(P(ty,...,t)) = v(P(ty,

., t)) for any P(Xy,...,X;) € K[X1,...,X;]. We denote by E
the closure of the field K(t1,...,t,) in Cp, and by E' the closure of
K(t),...,t.) in Cp. By Theorem 7 from [2] we know that K[t1,...,t,]
is dense in E and K|t},...,t}] is dense in E’. Next, let us consider
the canonical morphisms of rings ¢ : K([X1,...,X;] — Klt1,...,t]
and ¢ : K[X1,...,X;] — K[t},...,t.] given by ¢(P(X1,...,X;)) =
P(t1,...,t,) and respectively ¢'(P(X1,...,X;)) = P(t},...,t,), for any
P(Xy,...,Xr) € K[X1,...,X,]. Let us observe that

(4.1) Ker ¢ = {P(X1, ..., Xr) € K[X1,..., Xs] : 0(P(t1, ..., 1)) = 00}
= {P(Xy,..., Xr) € K[X1,..., X;] :v(P(#},...,t.)) = 00} = Ker ¢'.

Therefore one has an isomorphism of rings 9 : K[t1,...,t,] — K[t],...,
tr], given by ¥(P(t1,...,t:)) = P(t},...,t,) for any polynomial P(Xj,

.., Xr) € K[X1,...,X;]. By our assumption on t and t’, the iso-
morphism 1 is also an isometry, and so it extends by continuity to an
isomorphism ¢ : E — E’. We know from Galois theory in C,, as devel-
oped by Tate [11], Sen [9], Ax [3], that the closed subfields of C,, are in
one-to-one correspondence with the subfields of K. Thus if we take the
algebraic part in E and E', say L = ENK and L' = E'NK, then E and
E’ can be recovered from the fields L and L’ by taking the topological
closure in C,. Now clearly by restriction 1) produces an isomorphism
between L and L/, which fixes K. We extend this isomorphism to an
automorphism ¢ of K over K, and then we extend o by continuity to
an element of Galeont(Cp/K ), which we continue to denote by o. Since
1 and o have the same restriction to L, and since L is dense in E, it
follows that the restriction of ¢ to F coincides with +. In particular
o(tj) =t} for any j € {1,...,7}, and the lemma is proved. O

We are now ready to prove the following result.
THEOREM 2. Let K be a finite extension of Q, and fix an order on
N” which makes N" a well ordered set. Let t and t' be elements of

C,, such that they have a common normalized sequence of polynomials
over K, and such that for any k € N\ N(t), t and t' have a common



518 Alexandru Zaharescu

admissible polynomial of degree k over K. Then t and t’ are conjugate
over K.

Let us remark that in the statement of Theorem 2 it is not enough
to assume that t, t’ have a common normalized sequence of polyno-
mials over K, in order to conclude that they are conjugate over K.
For instance, if 7 = 1 and t is a root of an Eisenstein polynomial
P(X)= X%+ a1 X%+ +ag-1X + ag € Og[X], then, with the nat-
ural order on N, N(t) = {0,1,...,d—1}, and a normalized sequence of
polynomials for ¢ over K is given by My(X) = X*, k€ {0,1,...,d—1}.
Thus if ¢ is a root of another Eisenstein polynomial of same degree d
over K, then t,# will not be conjugate over K while they do have a
common normalized sequence of polynomials (X ’“)0 <k<g1- 10 case tis
transcendental over K, or more generally in case t = (t1,...,t,) € C;
with t1,...,t, algebraically independent over K, the set M/ (t) will coin-
cide with N, and Theorem 2 reduces to the following corollary.

COROLLARY 1. Let K be a finite extension of Qp and fix an order on
N" which makes N™ a well ordered set. Let t = (t1,...,t,) € C, with
t1,...,t, algebraically independent over K. If t' € CJ is such that t, t/
have a common normalized sequence of polynomials over K, then t and
t’ are conjugate over K.

Proof of Theorem 2. Let t, t' € C;, be as in the statement of the theo-
rem. Let (Mk(Xl, ... ’XT))ke/\f(t) be a common normalized sequence of
polynomials for both t and t’' over K, and choose for any k € N \ N (t)
a common admissible polynomial f; of degree k for both t and t’ over
K. For any j € N(t), the leading coefficient of M;(X1,...,X,) will
equal 77 for some I; € Z. Then f;(X1,..., Xy) := 74 Mj(X1,..., X;)
will be a common admissible polynomial of degree j for both t and t’
over K. We have then a common admissible sequence of polynomials
( fk) keN for both t and t’ over K. Take now an arbitrary polynomial
g(X1,...,X,) € K[X1,...,X;] and write it as a linear combination

d
(4.2) 9(X1, .., X)) =Y _a;fi(X1,. ., Xy),
=0
where d = degg(Xy,...,X,). Since fij(t1,...,tr) = fi(t},...,t.) =0
for any j € N\ NV (t), from (4.2) it follows that
(4.3) glts, - te) = D ciMy(ty,. .-, tr),

0<j<d
JEN(t)
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and

(4.4) 9(th, .ty = > M. 1),
0<;<d
FEN(t)

where ¢; = W;(a] for 0 < j < d, j € N(t). Recall that for any j

one has 0 < v(M;(ty,...,t.)), v(M;(th, ..., 1)) < v(nk) = 1/e(K/Qyp).
Therefore, by combining (4.3), (4. 4) w1th Theorem 1, (ii) we find that
(4.5) mm v(c;) < mm v(ciM;(t, ..., tr))

Je/\/(t) JEN(t)

= ’U(g(tl,...,tr)) < o

and similarly

(4.6) oin, v(cj) < Jin v(e; M;(t, ..., 1)
JENT(Y) JEN(t)

= v(g(t],...,t.)) < == + min v(c;).

1
(K/Q,) " o5

JENT(E)

By (4.5) and (4.6) it follows that
(4.7) ‘U(g(tl""’tr))_U(g(tll,...,t;n))| < ﬁ;)’

for any g € K[X;,...,X;]. We now fix a polynomial P(Xi,...,X,) €
K[X1,...,X,] and apply (4.7) with g = P™ for some large natural num-
ber n. We find that

2 ’ ’
(4.8) (K/Qy) > Ju(g(t,. - tr) = v(g(t], . -, 1))

= n|v(P(t1,...,t)) —v(P(t],...,t.)|.
Letting n — oo in (4.8) we obtain
(4.9) v(P(t1,...,t)) =v(P(t],...,t.)).
Since (4.9) holds for any polynomial P(Xy,...,X,) € K[Xy,...,X,],

from Lemma 2 it follows that t and t’ are conjugate over K, and this
completes the proof of the theorem.

References

[1] V. Alexandru, N. Popescu and A. Zaharescu, On the closed subfields of Cp, J.
Number Theory 68 (1998), no. 2, 131-150.



520 Alexandru Zaharescu

[2] V. Alexandru, N. Popescu and A. Zaharescu, The generating degree of Cp, Canad.
Math. Bull. 44 (2001), no. 1, 3-11.
[3] J. Ax, Zeros of Polynomials Over Local Fields. The Galois Action, J. Algebra
15 (1970), 417-428.
[4] J. Coates and R. Greenberg, Kummer theory for abelian varieties over local fields,
Invent. Math. 124 (1996), no. 1-3, 129-174.
[5] A.Iovita and A. Zaharescu, Galois theory of B, Compositio Math. 117 (1999),
no. 1, 1-31.
[6] K. Ota, On saturated distinguished chains over a local field, J. Number Theory
79 (1999), no. 2, 217-248.
[7] A. Popescu, N. Popescu, M. Vajaitu and A. Zaharescu, Chains of metric invari-
ants over a local field, Acta Arith. 103 (2002), no. 1, 27-40.
[8] N. Popescu and A. Zaharescu, On the structure of the irreducible polynomials
over local fields, J. Number Theory 52 (1995), no. 1, 98-118.
[9] S. Sen, On automorphisms of local fields, Ann. of Math. (2) 90 (1969), 33—46.
[10] J. P. Serre, Local fields, Graduate Texts in Mathematics, 67, Springer-Verlag,
New York-Berlin, 1979.
[11] J. Tate, p — divistble groups, 1967 Proc. Conf. Local Fields (Driebergen, 1966)
pp- 158-183 Springer, Berlin.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN,
1409 W. GREEN STREET, URBANA, IL, 61801, USA
E-mail: zaharesc@math.uiuc.edu



