INTEGRAL BASES OVER p-ADIC FIELDS

ALEXANDRU ZAHARESCU

ABSTRACT. Let p be a prime number, \mathbf{Q}_p the field of p-adic numbers, K a finite extension of \mathbf{Q}_p , \bar{K} a fixed algebraic closure of K and \mathbf{C}_p the completion of \bar{K} with respect to the p-adic valuation. Let E be a closed subfield of \mathbf{C}_p , containing K. Given elements $t_1, \ldots, t_r \in E$ for which the field $K(t_1, \ldots, t_r)$ is dense in E, we construct integral bases of E over K.

1. Introduction

Let p be a prime number, \mathbf{Q}_p the field of p-adic numbers, K a finite extension of \mathbf{Q}_p , \bar{K} a fixed algebraic closure of K and \mathbf{C}_p the completion of K with respect to the p-adic valuation. Given a finite extension L of K, it is known (see Serre [10], p. 57) that there are elements $\theta \in L$ for which the elements $1, \theta, \theta^2, \dots, \theta^{d-1}$, with d = [L:K], form an integral basis of L over K. In that case one has $O_K[\theta] = O_L$, where O_K, O_L denote the rings of integers in K and respectively L. If an element $\alpha \in L$ is given and we only know that α is a generator of L over K, that is $L = K(\alpha)$, then an integral basis of L over K can be constructed by following the procedure from [8], Remark 4.7. This basis is defined in terms of the so-called saturated distinguished chains for α , which have been introduced in [8], and studied also in [1], [6] and [7]. The shape of such a basis may be useful in practice, for instance it has been used in [5] in order to show that the Ax-Sen constant vanishes for deeply ramified extensions (in the sense of Coates-Greenberg [4]). In this paper we consider the case when several elements $\alpha_1, \ldots, \alpha_r \in L$ are given such that $K(\alpha_1,\ldots,\alpha_r)=L$, and one wants to find an integral basis of L over K. We work in the following more general context. Let E be a closed subfield of C_p , not necessarily finite over K, and let t_1, \ldots, t_r be elements of E such that the field $K(t_1, \ldots, t_r)$ is dense in E. Then we

Received September 5, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 11S99.

Key words and phrases: p-adic fields, integral bases, admissible polynomials.

show how one can construct, in terms of t_1, \ldots, t_r , an integral basis of E over K. In case r=1 such a basis has been constructed in [1]. For a general r, we associate to any $\mathbf{t}=(t_1,\ldots,t_r)\in \mathbf{C}_p^r$ certain sequences $\big(M_k(X_1,\ldots,X_r)\big)_{k\in\mathcal{N}(\mathbf{t})}$ of polynomials in r variables X_1,\ldots,X_r with coefficients in K, and call them normalized sequences for \mathbf{t} over K. Then we show that for any such normalized sequence of polynomials, the sequence $\big(M_k(t_1,\ldots,t_r)\big)_{k\in\mathcal{N}(\mathbf{t})}$ forms an integral basis of E over K. We also consider the effect of the action of the Galois group $Gal_{cont}(\mathbf{C}_p/K)$ on our bases. If $t_1,\ldots,t_r\in \mathbf{C}_p$ and $\sigma\in Gal_{cont}(\mathbf{C}_p/K)$, then the r-tuples (t_1,\ldots,t_r) and $(\sigma(t_1),\ldots,\sigma(t_r))$ produce the same normalized sequences of polynomials. We will show that a converse also holds, and in order to prove that result we first establish a criterion which uses the p-adic valuation to identify the conjugates of a given element $\mathbf{t}\in \mathbf{C}_p^r$.

2. Admissible polynomials

In what follows K will be a fixed finite extension of \mathbf{Q}_p . Denote by v the p-adic valuation on \mathbf{C}_p , normalized by v(p)=1. Let π_K be a uniformising element of K. If $e(K/\mathbf{Q}_p)$ denotes the ramification index of K over \mathbf{Q}_p , then $v(\pi_K) = \frac{1}{e(K/\mathbf{Q}_p)}$. Next, let us fix an order \leq on \mathbf{N}^r which makes \mathbf{N}^r a well ordered set. One such possible order is to put $\mathbf{m} \leq \mathbf{n}$ provided that $m_1 + \cdots + m_r \leq n_1 + \cdots + n_r$, and to choose the lexicographical order for those r-tuples \mathbf{m} for which the total degree $m_1 + \cdots + m_r$ is the same.

Another class of examples of orders is obtained as follows. Let $\eta = (\eta_1, \ldots, \eta_r)$, where η_1, \ldots, η_r are positive real numbers, linearly independent over \mathbf{Q} . Define the η -degree of \mathbf{m} to be

(2.1)
$$\deg_n \mathbf{m} = \eta_1 m_1 + \dots + \eta_r m_r.$$

Here all the r-tuples $\mathbf{m} \in \mathbf{N}^r$ have distinct degrees. Then set $\mathbf{m} \leq \mathbf{n}$ if and only if $\deg_n \mathbf{m} \leq \deg_n \mathbf{n}$.

Let us fix an order on \mathbf{N}^r as above. Arrange the elements of \mathbf{N}^r in increasing oder,

$$(2.2) m_0 < m_1 < m_2 < \cdots < m_k < \cdots,$$

where the inequalities in (2.2) are with respect to this fixed order. Let ϕ be the induced monotonic one-to-one map from \mathbf{N} to \mathbf{N}^r , that is, $\phi(k) = \mathbf{m}_k$ for any $k \in \mathbf{N}$. Consider the ring of polynomials in r variables X_1, \ldots, X_r over K. If $k \in \mathbf{N}$ and $\phi(k) = (m_1, \ldots, m_r) \in \mathbf{N}^r$, we define the degree of the monomial $X_1^{m_1} \cdots X_r^{m_r}$ to be $\deg(X_1^{m_1} \cdots X_r^{m_r}) = k$.

Thus for each $k \in \mathbb{N}$ there exists exactly one monomial of degree k. For any nonzero polynomial $P(X_1, \ldots, X_r) \in K[X_1, \ldots, X_r]$ we define $\deg P(X_1, \ldots, X_r)$ to be the largest of the degrees of its monomials. We put $\deg 0 = -\infty$. One easily sees that

(2.3)
$$\deg(P) = 0$$
 if and only if $0 \neq P$ is constant,

(2.4)

 $\deg(P+Q) \leq \max\{\deg P, \deg Q\}$, with equality if $\deg P \neq \deg Q$, and

(2.5)
$$\deg(cP) = \deg P \text{ for any } 0 \neq c \in K.$$

The leading coefficient in a polynomial $P(X_1, \ldots, X_r)$ is the coefficient corresponding to the monomial of highest degree in $P(X_1, \ldots, X_r)$. A polynomial is said to be monic if its leading coefficient is 1.

In what follows we work with a fixed order on \mathbf{N}^r as above. Let $\mathbf{t} = (t_1, \dots, t_r) \in \mathbf{C}_p^r$ and let $k \in \mathbf{N}$. We define an admissible polynomial of degree k for \mathbf{t} over K to be any monic polynomial $P(X_1, \dots, X_r) \in K[X_1, \dots, X_r]$ of degree k such that

(2.6)
$$v(P(t_1, \ldots, t_r)) \ge v(Q(t_1, \ldots, t_r)),$$

for any monic polynomial $Q(X_1, \ldots, X_r) \in K[X_1, \ldots, X_r]$ of degree k. A sequence $(f_k)_{k \in \mathbb{N}}$ with the property that for any k, f_k is an admissible polynomial of degree k for \mathbf{t} over K will be called an admissible sequence of polynomials for \mathbf{t} over K. The existence of admissible sequences of polynomials for any $\mathbf{t} \in \mathbb{C}_p^r$ follows from the next lemma.

LEMMA 1. Fix a finite extension K of \mathbf{Q}_p and an order on \mathbf{N}^r as above. Then, for any $\mathbf{t} \in \mathbf{C}_p^r$ and any $k \in \mathbf{N}$ there exists an admissible polynomial of degree k for \mathbf{t} over K.

Proof. Let
$$\mathbf{t} = (t_1, \dots, t_r) \in \mathbf{C}_p^r$$
 and $k \in \mathbf{N}$. Denote (2.7)

$$\gamma_k(\mathbf{t}) = \sup\{v(G(t_1, \dots, t_r)) : G \in K[X_1, \dots, X_r], G \text{ monic, deg } G = k\}.$$

Here $\gamma_k(\mathbf{t}) \in (-\infty, \infty]$. In order to finish the proof of the lemma we need to show that the supremum on the right side of (2.7) is attained. Let $(\rho_m)_{m \in \mathbf{N}}$ be a strictly increasing sequence of real numbers with $\lim_{m \to \infty} \rho_m = \gamma_k(\mathbf{t})$. For any m, denote (2.8)

$$\mathcal{F}_m = \{ f \in K[X_1, \dots, X_r] : f \text{ monic, deg } f = k, v(f(t_1, \dots, t_r)) \ge \rho_m \}.$$

Evidently one has the inclusions $\mathcal{F}_0 \supseteq \mathcal{F}_1 \supseteq \cdots \supseteq \mathcal{F}_m \supseteq \cdots$. Since $\rho_m < \gamma_k(\mathbf{t})$ for any m, it follows that all the sets \mathcal{F}_m are nonempty. For any

nonzero polynomial $f(X_1, \ldots, X_r) \in K[X_1, \ldots, X_r]$, let $b(f) \in \mathbf{Z}$ denote the smallest integer number for which the polynomial $\pi_K^{b(f)} f(X_1, \ldots, X_r)$ belongs to $O_K[X_1, \ldots, X_r]$. Note that if $f(X_1, \ldots, X_r)$ is monic then $b(f) \geq 0$. Next, for any $m \in \mathbf{N}$ we set

$$(2.9) b_m = \min\{b(f) : f(X_1, \dots, X_r) \in \mathcal{F}_m\}.$$

One clearly has $0 \le b_0 \le b_1 \le \cdots \le b_m \le \cdots$. We claim that there is a natural number m^* such that

$$(2.10) b_{m^*} = b_{m^*+1} = \dots = b_m = \dots.$$

In order to prove the claim, let us choose for any $m \in \mathbb{N}$ a polynomial $f_m(X_1,\ldots,X_r)\in\mathcal{F}_m$ for which the minimum is attained on the right side of (2.9). Thus $b(f_m) = b_m$. Denote $g_m = \pi_K^{b_m} f_m$, so that $g_m \in O_K[X_1,\ldots,X_r]$ and g_m is primitive for any m. Let us assume that $b_m \to \infty$ as $m \to \infty$. Consider the sequence of polynomials $(g_m)_{m\in\mathbb{N}}$. Since O_K is compact, there exists a subsequence $(g_{m_j})_{j\in\mathbb{N}}$ of $(g_m)_{m\in\mathbb{N}}$ for which the sequence of coefficients corresponding to any given monomial is convergent. In the limit we obtain a polynomial $g(X_1,\ldots,X_r)\in O_K[X_1,\ldots,X_r]$, which is also primitive, and hence it is not the zero polynomial. Note that the leading coefficient of g_m equals $\pi_K^{b_m}$, which goes to zero as $m \to \infty$, by the above assumption that $\lim_{m\to\infty} b_m = \infty$. Therefore the degree of $g(X_1,\ldots,X_r)$ will be strictly smaller than k. As a consequence, for any $m \in \mathbb{N}$ the polynomial $h_m := f_m - \pi_K^{-b_m} g$ will be monic and of degree k. On the other hand, along the subsequence $(m_j)_{j\in\mathbb{N}}$ we have $g_{m_j}(t_1,\ldots,t_r)\to g(t_1,\ldots,t_r)$. Thus $v(g_{m_i}(t_1,\ldots,t_r)) \to v(g(t_1,\ldots,t_r))$ as $j\to\infty$. Since

$$(2.11) v(g_{m_j}(t_1,\ldots,t_r)) = v(\pi_K^{b_{m_j}} f_m(t_1,\ldots,t_r)) \ge \frac{b_{m_j}}{e(L/K)} + \rho_{m_j},$$

and since the right side of (2.11) goes to infinity as $j \to \infty$, we deduce that $g(t_1, \ldots, t_r) = 0$. Therefore

$$(2.12) v(h_m(t_1, \ldots, t_r)) = v(f_m(t_1, \ldots, t_r)) \ge \rho_m,$$

for any $m \in \mathbb{N}$. Choose now a j large enough so that each coefficient of the polynomial $(g_{m_j}(X_1,\ldots,X_r)-g(X_1,\ldots,X_r))$ is divisible by π_K .

Then $\pi_K^{b_{m_j}-1}h_{m_j} = \frac{1}{\pi_K}(g_{m_j}-g) \in O_K[X_1,\ldots,X_r]$. This contradicts the definition of b_{m_j} , since h_{m_j} is monic, of degree k, and by (2.12) it follows that $h_{m_j} \in \mathcal{F}_{m_j}$. This proves (2.10). Next, from (2.10) and the fact that $\pi^{-b_{m^*}}O_K$ is compact, it follows that if we choose for each

 $m \geq m^*$ a polynomial $f_m \in \mathcal{F}_m$ satisfying $b(f_m) = b_m = b_{m^*}$, there is a subsequence $(f_{m_j})_{j \in \mathbb{N}}$ of $(f_m)_{m \in \mathbb{N}}$ which converges to a polynomial $f \in K[X_1, \ldots, X_r]$. This polynomial f is monic, of degree k, and one has $\lim_{j \to \infty} f_{m_j}(t_1, \ldots, t_r) = f(t_1, \ldots, t_r)$. Since $v(f_{m_j}(t_1, \ldots, t_r)) \geq \rho_{m_j}$ for any f, we see that $v(f(t_1, \ldots, t_r)) = \gamma_k(\mathbf{t})$, and this completes the proof of the lemma.

3. Integral bases

Let us fix K and an order on \mathbf{N}^r as before, and choose a $\mathbf{t} = (t_1, \ldots, t_r) \in \mathbf{C}_p^r$. Let $(f_k)_{k \in \mathbf{N}}$ be an admissible sequence of polynomials for \mathbf{t} over K, and let $\gamma_k(\mathbf{t})$ be defined by (2.7). Thus

$$(3.1) v(f_k(t_1,\ldots,t_r)) = \gamma_k(\mathbf{t}),$$

for any $k \in \mathbb{N}$. Denote

(3.2)
$$\mathcal{N}(\mathbf{t}) = \{ k \in \mathbf{N} : \gamma_k(\mathbf{t}) < \infty \}.$$

Thus $f_k(t_1, ..., t_r) \neq 0$ for any $k \in \mathcal{N}(\mathbf{t})$, and $f_k(t_1, ..., t_r) = 0$ for any $k \in \mathbf{N} \setminus \mathcal{N}(\mathbf{t})$. Next, for any $k \in \mathcal{N}(\mathbf{t})$ let $l_k = [e(K/\mathbf{Q}_p) \cdot \gamma_k(\mathbf{t})] \in \mathbf{Z}$, where $[\cdot]$ denotes the integer part function. Then set

(3.3)
$$M_k(X_1, \dots, X_r) = \pi_K^{-l_k} f_k(X_1, \dots, X_r) \in K[X_1, \dots, X_r].$$

Note that $v(M_k(t_1,\ldots,t_r)) \geq 0$ while $v(\frac{1}{\pi_K}M_k(t_1,\ldots,t_r)) < 0$, for any $k \in \mathcal{N}(\mathbf{t})$. We call the sequence $(M_k(X_1,\ldots,X_r))_{k \in \mathcal{N}(\mathbf{t})}$ a normalized sequence of polynomials for \mathbf{t} over K. Here the set $\mathcal{N}(\mathbf{t})$ may be finite or infinite. Let $E \subseteq \mathbf{C}_p$ denote the completion of the field $K(t_1,\ldots,t_r)$, and $O_E = \{z \in E : v(z) \geq 0\}$ the ring of integers of E. We show that for any normalized sequence $(M_k(X_1,\ldots,X_r))_{k \in \mathcal{N}(\mathbf{t})}$ for \mathbf{t} over K, the sequence $(M_k(t_1,\ldots,t_r))_{k \in \mathcal{N}(\mathbf{t})}$ forms an integral basis of E over K.

THEOREM 1. Let K be a finite extension of \mathbf{Q}_p and fix an order on \mathbf{N}^r which makes \mathbf{N}^r a well ordered set. Choose a $\mathbf{t} = (t_1, \ldots, t_r) \in \mathbf{C}_p^r$ and let E denote the closure of the field $K(t_1, \ldots, t_r)$ in \mathbf{C}_p . Then for any normalized sequence of polynomials $(M_k(X_1, \ldots, X_r))_{k \in \mathcal{N}(\mathbf{t})}$ for \mathbf{t} over K, the sequence $(M_k(t_1, \ldots, t_r))_{k \in \mathcal{N}(\mathbf{t})}$ forms an integral basis of E over K. More precisely:

(i) For any $y \in E$ there exists a unique sequence $(c_k)_{k \in \mathcal{N}(\mathbf{t})}$ in K, with $c_k \to 0$ as $k \to \infty$, such that $y = \sum_k c_k M_k(t_1, \ldots, t_r)$.

(ii) Let $y \in E$, $y = \sum_k c_k M_k(t_1, \ldots, t_r)$, with $c_k \in K$ for all $k \in \mathcal{N}(\mathbf{t})$ and $c_k \to 0$ as $k \to \infty$. Then $v(y) = \min_k v(c_k M_k(t_1, \ldots, t_r))$.

(iii) Let $y \in E$. Then $y \in O_E$ if and only if $y = \sum_k c_k M_k(t_1, \ldots, t_r)$ with $c_k \in O_K$ for all $k \in \mathcal{N}(\mathbf{t})$ and $c_k \to 0$ as $k \to \infty$.

Proof. It is easy to see that (iii) follows from (i), (ii) and the fact that for any $k \in \mathcal{N}(\mathbf{t})$ and $c \in K$, one has $cM_k(t_1, \ldots, t_r) \in O_E$ if and only if $c \in O_K$. We now proceed to prove (ii). Let $y \in E$, $y = \sum_k c_k M_k(t_1, \ldots, t_r)$ with $c_k \in K$ for all $k \in \mathcal{N}(\mathbf{t})$ and $c_k \to 0$ as $k \to \infty$. We need to show that

(3.4)
$$v(y) = \min_{k \in \mathcal{N}(\mathbf{t})} v(c_k M_k(t_1, \dots, t_r)).$$

Note that the minimum is attained on the right side of (3.4) since $v(c_k) \to \infty$ as $k \to \infty$. Let $d \in \mathcal{N}(\mathbf{t})$ be the largest natural number for which $v(c_d M_d(t_1, \ldots, t_r)) = \min_k v(c_k M_k(t_1, \ldots, t_r))$. We clearly have $v(y) \geq v(c_d M_d(t_1, \ldots, t_r))$. Let us assume that $v(y) > v(c_d M_d(t_1, \ldots, t_r))$. Write y in the form $y = y_1 + y_2$, where $y_1 = \sum_{k \leq d} c_k M_k(t_1, \ldots, t_r)$ and $y_2 = \sum_{k \geq d} c_k M_k(t_1, \ldots, t_r)$. Since $v(c_k M_k(t_1, \ldots, t_r)) > v(c_d M_d(t_1, \ldots, t_r))$ for any k > d, it follows that $v(y_2) > v(c_d M_d(t_1, \ldots, t_r))$. Thus $v(y_1) \geq \min\{v(y), v(y_2)\} > v(c_d M_d(t_1, \ldots, t_r))$. Consider the polynomial

(3.5)
$$G(X_1, \dots, X_r) = \frac{\pi_K^{l_d}}{c_d} \sum_{k < d} c_k M_k(X_1, \dots, X_r) \in K[X_1, \dots, X_r].$$

Let us remark that $G(X_1, \ldots, X_r)$ is monic, of degree d, and

(3.6)
$$v(G(t_1,\ldots,t_r)) = v\left(\frac{\pi_K^{l_d}}{c_d}y_1\right) > v(\pi_K^{l_d}M_d(t_1,\ldots,t_r)).$$

This contradicts the fact that $\pi_K^{l_d}M_d(X_1,\ldots,X_r)$ is an admissible polynomial of degree d for \mathbf{t} over K. Therefore (3.4) holds true, and this proves (ii). It remains to prove (i).

Let $y \in E$. We want to find a sequence $(c_k)_{k \in \mathcal{N}(\mathbf{t})}$ in K with $c_k \to 0$ as $k \to \infty$, such that $y = \sum_k c_k M_k(t_1, \ldots, t_r)$. By Theorem 7 from [2] we know that the ring $K[t_1, \ldots, t_r]$ is dense in the closure E of the field $K(t_1, \ldots, t_r)$. Choose a sequence of polynomials $(P_m(X_1, \ldots, X_r))_{m \in \mathbb{N}}$ in $K[X_1, \ldots, X_r]$ such that

(3.7)
$$P_m(t_1,\ldots,t_r)\to y \text{ as } m\to\infty.$$

For each $m \in \mathbb{N}$ denote $d_m = \deg P_m(X_1, \ldots, X_r)$. Let $(f_k)_{k \in \mathbb{N}}$ be an admissible sequence of polynomials for \mathbf{t} over K, with $f_k(X_1, \ldots, X_r) =$

 $\pi_K^{l_k}M_k(X_1,\ldots,X_r)$ for any $k\in\mathcal{N}(\mathbf{t})$, while for $k\notin\mathcal{N}(\mathbf{t})$ we allow f_k to be any admissible polynomial of degree k for \mathbf{t} over K. Next, we write each polynomial P_m as a finite linear combination of our admissible sequence of polynomials $(f_k)_{k\in\mathbb{N}}$,

(3.8)
$$P_m(X_1, \dots, X_r) = \sum_{j=0}^{d_m} a_{m,j} f_j(X_1, \dots, X_r).$$

Since $f_j(t_1, ..., t_r) = 0$ for $j \notin \mathcal{N}(\mathbf{t})$, from (3.8) we derive

(3.9)
$$P_m(t_1, \dots, t_r) = \sum_{\substack{0 \le j \le d_m \\ j \in \mathcal{N}(\mathbf{t})}} a_{m,j} f_j(t_1, \dots, t_r).$$

We put (3.9) in the form

(3.10)
$$P_m(t_1, ..., t_r) = \sum_{j \in \mathcal{N}(\mathbf{t})} c_{m,j} M_j(t_1, ..., t_r),$$

for any $m \in \mathbb{N}$, where $c_{m,j} = \pi_K^{l_j} a_{m,j}$ for $j \leq d_m$ and $c_{m,j} = 0$ for $j > d_m$. The sequence $\left(P_m(t_1, \ldots, t_r)\right)_{m \in \mathbb{N}}$ being convergent, by (ii) it follows that for each $j \in \mathcal{N}(\mathbf{t})$ the sequence $\left(c_{m,j}\right)_{m \in \mathbb{N}}$ is a Cauchy sequence in K. Let $c_j = \lim_{m \to \infty} c_{m,j} \in K$. We claim that $c_j \to 0$ as $j \to \infty$. Indeed, fix an $\epsilon > 0$ and choose an $m_{\epsilon} \in \mathbb{N}$ such that $v(y - P_m(t_1, \ldots, t_r)) \geq \frac{1}{\epsilon}$ for any $m \geq m_{\epsilon}$. Then for any $j \in \mathcal{N}(\mathbf{t})$ and any $m, n \geq m_{\epsilon}$ we have on one hand

(3.11)
$$v(P_m(t_1, \dots, t_r) - P_n(t_1, \dots, t_r))$$

$$\geq \min\{v(y - P_m(t_1, \dots, t_r)), v(y - P_n(t_1, \dots, t_r))\} \geq \frac{1}{\epsilon},$$

and on the other hand we have

(3.12)
$$v(P_{m}(t_{1},...,t_{r}) - P_{n}(t_{1},...,t_{r}))$$

$$= \min_{k \in \mathcal{N}(\mathbf{t})} v((c_{m,k} - c_{n,k}) M_{k}(t_{1},...,t_{r}))$$

$$\leq v(c_{m,j} - c_{n,j}) + v(M_{j}(t_{1},...,t_{r}))$$

$$< v(c_{m,j} - c_{n,j}) + \frac{1}{e(K/Q_{p})}.$$

Combining (3.11) and (3.12) we find that

(3.13)
$$v(c_{m,j} - c_{n,j}) > \frac{1}{\epsilon} - \frac{1}{e(K/Q_p)}.$$

If we let $n \to \infty$ while keeping j and m fixed, from (3.13) it follows that

(3.14)
$$v(c_{m,j} - c_j) > \frac{1}{\epsilon} - \frac{1}{e(K/\mathbf{Q}_p)},$$

for any $m \geq m_{\epsilon}$ and any $j \in \mathcal{N}(\mathbf{t})$. In particular, for $m = m_{\epsilon}$ and $j > d_{m_{\epsilon}}$ one has $c_{m_{\epsilon},j} = 0$, and (3.14) implies

$$(3.15) v(c_j) > \frac{1}{\epsilon} - \frac{1}{e(K/\mathbf{Q}_p)},$$

for any $\epsilon > 0$ and any $j > d_{m_{\epsilon}}$. This shows that $c_j \to 0$ as $j \to \infty$. Let us consider the element $z \in E$ given by

(3.16)
$$z = \sum_{k \in \mathcal{N}(\mathbf{t})} c_k M_k(t_1, \dots, t_r).$$

Using (ii) it follows from (3.14) that for any $\epsilon > 0$ and any $m \geq m_{\epsilon}$ one has

(3.17)

$$v(P_m(t_1,\ldots,t_r)-z)=\min_{j\in\mathcal{N}(\mathbf{t})}v((c_{m,j}-c_j)M_j(t_1,\ldots,t_r))\geq \frac{1}{\epsilon}-\frac{1}{e(K/\mathbf{Q}_p)}.$$

Therefore $P_m(t_1, \ldots, t_r) \to z$ as $m \to \infty$. Comparing this with (3.7) we see that z = y, and (3.16) gives the desired expression of y in terms of our sequence $(M_k(t_1, \ldots, t_r))_{k \in \mathcal{N}(\mathbf{t})}$. Lastly, the uniqueness of such an expression follows easily from (ii). This completes the proof of the theorem.

4. Conjugates and normalized sequences of polynomials

We keep the notations from previous sections. Denote as usual the group of continuous automorphisms of \mathbf{C}_p over K by $Gal_{cont}(\mathbf{C}_p/K)$. If $\mathbf{t} = (t_1, \ldots, t_r), \mathbf{t}' = (t'_1, \ldots, t'_r) \in \mathbf{C}_p^r$ and if there exists $\sigma \in Gal_{cont}(\mathbf{C}_p/K)$ such that $\sigma(t_j) = t'_j$ for any $j \in \{1, \ldots, r\}$ we say that \mathbf{t} and \mathbf{t}' are conjugate over K. Note that if \mathbf{t} and \mathbf{t}' are conjugate over K then $\mathcal{N}(\mathbf{t}) = \mathcal{N}(\mathbf{t}')$, and a sequence $(M_k(X_1, \ldots, X_r))_{k \in \mathcal{N}(\mathbf{t})}$ is a normalized sequence of polynomials for \mathbf{t} over K if and only if it is a normalized sequence of polynomials for \mathbf{t}' over K. We ask whether a converse of this statement also holds. In order to provide an answer to this question we first prove the following lemma, which generalizes the criterion from Remark 3.6 of [1].

LEMMA 2. Let $\mathbf{t} = (t_1, \dots, t_r), \mathbf{t}' = (t'_1, \dots, t'_r)$ be elements of C_p^r . Then \mathbf{t} and \mathbf{t}' are conjugate over K if and only if $v(P(t_1, \dots, t_r)) = v(P(t'_1, \dots, t'_r))$ for any polynomial $P(X_1, \dots, X_r) \in K[X_1, \dots, X_r]$.

Proof. If $\mathbf{t}=(t_1,\ldots,t_r), \mathbf{t}'=(t_1',\ldots,t_r')$ are conjugate over K then evidently $P(t_1,\ldots,t_r)$ and $P(t_1',\ldots,t_r')$ are conjugate over K, and so they have the same valuation. Conversely, let us assume that $\mathbf{t}=(t_1,\ldots,t_r),\mathbf{t}'=(t_1',\ldots,t_r')\in \mathbf{C}_p^r$ are such that $v(P(t_1,\ldots,t_r))=v(P(t_1',\ldots,t_r'))$ for any $P(X_1,\ldots,X_r)\in K[X_1,\ldots,X_r]$. We denote by E the closure of the field $K(t_1,\ldots,t_r)$ in \mathbf{C}_p , and by E' the closure of $K(t_1',\ldots,t_r')$ in \mathbf{C}_p . By Theorem 7 from [2] we know that $K[t_1,\ldots,t_r]$ is dense in E and $K[t_1',\ldots,t_r']$ is dense in E'. Next, let us consider the canonical morphisms of rings $\phi:K[X_1,\ldots,X_r]\to K[t_1,\ldots,t_r]$ and $\phi':K[X_1,\ldots,X_r]\to K[t_1',\ldots,t_r']$ given by $\phi(P(X_1,\ldots,X_r))=P(t_1,\ldots,t_r)$ and respectively $\phi'(P(X_1,\ldots,X_r))=P(t_1',\ldots,t_r')$, for any $P(X_1,\ldots,X_r)\in K[X_1,\ldots,X_r]$. Let us observe that

(4.1) Ker
$$\phi = \{P(X_1, \dots, X_r) \in K[X_1, \dots, X_r] : v(P(t_1, \dots, t_r)) = \infty\}$$

= $\{P(X_1, \dots, X_r) \in K[X_1, \dots, X_r] : v(P(t'_1, \dots, t'_r)) = \infty\} = \text{Ker } \phi'.$

Therefore one has an isomorphism of rings $\psi: K[t_1, \ldots, t_r] \to K[t'_1, \ldots, t_r]$ t'_r , given by $\psi(P(t_1,\ldots,t_r))=P(t'_1,\ldots,t'_r)$ for any polynomial $P(X_1,\ldots,t'_r)$ $\ldots, X_r \in K[X_1, \ldots, X_r]$. By our assumption on t and t', the isomorphism ψ is also an isometry, and so it extends by continuity to an isomorphism $\psi: E \to E'$. We know from Galois theory in \mathbf{C}_p , as developed by Tate [11], Sen [9], Ax [3], that the closed subfields of C_p are in one-to-one correspondence with the subfields of K. Thus if we take the algebraic part in E and E', say $L = E \cap \bar{K}$ and $L' = E' \cap \bar{K}$, then E and E' can be recovered from the fields L and L' by taking the topological closure in C_p . Now clearly by restriction ψ produces an isomorphism between L and L', which fixes K. We extend this isomorphism to an automorphism σ of \bar{K} over K, and then we extend σ by continuity to an element of $Gal_{cont}(\mathbf{C}_p/K)$, which we continue to denote by σ . Since ψ and σ have the same restriction to L, and since L is dense in E, it follows that the restriction of σ to E coincides with ψ . In particular $\sigma(t_j) = t_j'$ for any $j \in \{1, \dots, r\}$, and the lemma is proved.

We are now ready to prove the following result.

THEOREM 2. Let K be a finite extension of \mathbf{Q}_p and fix an order on \mathbf{N}^r which makes \mathbf{N}^r a well ordered set. Let \mathbf{t} and \mathbf{t}' be elements of \mathbf{C}_p^r such that they have a common normalized sequence of polynomials over K, and such that for any $k \in \mathbf{N} \setminus \mathcal{N}(\mathbf{t})$, \mathbf{t} and \mathbf{t}' have a common

admissible polynomial of degree k over K. Then \mathbf{t} and \mathbf{t}' are conjugate over K.

Let us remark that in the statement of Theorem 2 it is not enough to assume that \mathbf{t} , \mathbf{t}' have a common normalized sequence of polynomials over K, in order to conclude that they are conjugate over K. For instance, if r=1 and t is a root of an Eisenstein polynomial $P(X)=X^d+a_1X^{d-1}+\cdots+a_{d-1}X+a_d\in O_K[X]$, then, with the natural order on \mathbf{N} , $\mathcal{N}(\mathbf{t})=\{0,1,\ldots,d-1\}$, and a normalized sequence of polynomials for t over K is given by $M_k(X)=X^k$, $k\in\{0,1,\ldots,d-1\}$. Thus if t' is a root of another Eisenstein polynomial of same degree d over K, then t,t' will not be conjugate over K while they do have a common normalized sequence of polynomials $(X^k)_{0\leq k\leq d-1}$. In case t is transcendental over K, or more generally in case $\mathbf{t}=(t_1,\ldots,t_r)\in \mathbf{C}_p^r$ with t_1,\ldots,t_r algebraically independent over K, the set $\mathcal{N}(\mathbf{t})$ will coincide with \mathbf{N} , and Theorem 2 reduces to the following corollary.

COROLLARY 1. Let K be a finite extension of \mathbf{Q}_p and fix an order on \mathbf{N}^r which makes \mathbf{N}^r a well ordered set. Let $\mathbf{t} = (t_1, \ldots, t_r) \in \mathbf{C}_p^r$ with t_1, \ldots, t_r algebraically independent over K. If $\mathbf{t}' \in \mathbf{C}_p^r$ is such that \mathbf{t} , \mathbf{t}' have a common normalized sequence of polynomials over K, then \mathbf{t} and \mathbf{t}' are conjugate over K.

Proof of Theorem 2. Let $\mathbf{t}, \mathbf{t}' \in \mathbf{C}_p^r$ be as in the statement of the theorem. Let $(M_k(X_1, \ldots, X_r))_{k \in \mathcal{N}(\mathbf{t})}$ be a common normalized sequence of polynomials for both \mathbf{t} and \mathbf{t}' over K, and choose for any $k \in \mathbf{N} \setminus \mathcal{N}(\mathbf{t})$ a common admissible polynomial f_k of degree k for both \mathbf{t} and \mathbf{t}' over K. For any $j \in \mathcal{N}(\mathbf{t})$, the leading coefficient of $M_j(X_1, \ldots, X_r)$ will equal $\pi_K^{-l_j}$ for some $l_j \in \mathbf{Z}$. Then $f_j(X_1, \ldots, X_r) := \pi_K^{l_j} M_j(X_1, \ldots, X_r)$ will be a common admissible polynomial of degree j for both \mathbf{t} and \mathbf{t}' over K. We have then a common admissible sequence of polynomials $(f_k)_{k \in \mathbf{N}}$ for both \mathbf{t} and \mathbf{t}' over K. Take now an arbitrary polynomial $g(X_1, \ldots, X_r) \in K[X_1, \ldots, X_r]$ and write it as a linear combination

(4.2)
$$g(X_1, \dots, X_r) = \sum_{j=0}^d a_j f_j(X_1, \dots, X_r),$$

where $d = \deg g(X_1, \ldots, X_r)$. Since $f_j(t_1, \ldots, t_r) = f_j(t'_1, \ldots, t'_r) = 0$ for any $j \in \mathbb{N} \setminus \mathcal{N}(\mathbf{t})$, from (4.2) it follows that

$$(4.3) g(t_1,\ldots,t_r) = \sum_{\substack{0 \le j \le d \\ j \in \mathcal{N}(t)}} c_j M_j(t_1,\ldots,t_r),$$

and

(4.4)
$$g(t'_1, \dots, t'_r) = \sum_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} c_j M_j(t'_1, \dots, t'_r),$$

where $c_j = \pi_K^{l_j} a_j$ for $0 \le j \le d$, $j \in \mathcal{N}(\mathbf{t})$. Recall that for any j one has $0 \le v(M_j(t_1, \ldots, t_r)), v(M_j(t_1', \ldots, t_r')) < v(\pi_K) = 1/e(K/Q_p)$. Therefore, by combining (4.3), (4.4) with Theorem 1, (ii) we find that

(4.5)
$$\min_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} v(c_j) \le \min_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} v(c_j M_j(t_1, \dots, t_r))$$
$$= v(g(t_1, \dots, t_r)) < \frac{1}{e(K/\mathbf{Q}_p)} + \min_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} v(c_j),$$

and similarly

$$\frac{\min\limits_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} v(c_j) \le \min\limits_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} v(c_j M_j(t'_1, \dots, t'_r))
= v(g(t'_1, \dots, t'_r)) < \frac{1}{e(K/\mathbf{Q}_p)} + \min\limits_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} v(c_j).$$

By (4.5) and (4.6) it follows that

for any $g \in K[X_1, ..., X_r]$. We now fix a polynomial $P(X_1, ..., X_r) \in K[X_1, ..., X_r]$ and apply (4.7) with $g = P^n$ for some large natural number n. We find that

(4.8)
$$\frac{2}{e(K/\mathbf{Q}_p)} > |v(g(t_1, \dots, t_r)) - v(g(t'_1, \dots, t'_r))|$$
$$= n |v(P(t_1, \dots, t_r)) - v(P(t'_1, \dots, t'_r))|.$$

Letting $n \to \infty$ in (4.8) we obtain

(4.9)
$$v(P(t_1, \dots, t_r)) = v(P(t'_1, \dots, t'_r)).$$

Since (4.9) holds for any polynomial $P(X_1, ..., X_r) \in K[X_1, ..., X_r]$, from Lemma 2 it follows that \mathbf{t} and \mathbf{t}' are conjugate over K, and this completes the proof of the theorem.

References

[1] V. Alexandru, N. Popescu and A. Zaharescu, On the closed subfields of C_p , J. Number Theory **68** (1998), no. 2, 131–150.

- [2] V. Alexandru, N. Popescu and A. Zaharescu, The generating degree of C_p , Canad. Math. Bull. 44 (2001), no. 1, 3–11.
- [3] J. Ax, Zeros of Polynomials Over Local Fields. The Galois Action, J. Algebra 15 (1970), 417–428.
- [4] J. Coates and R. Greenberg, Kummer theory for abelian varieties over local fields, Invent. Math. 124 (1996), no. 1-3, 129–174.
- [5] A. Iovita and A. Zaharescu, Galois theory of B_{dR}^+ , Compositio Math. 117 (1999), no. 1, 1–31.
- [6] K. Ota, On saturated distinguished chains over a local field, J. Number Theory **79** (1999), no. 2, 217–248.
- [7] A. Popescu, N. Popescu, M. Vajaitu and A. Zaharescu, Chains of metric invariants over a local field, Acta Arith. 103 (2002), no. 1, 27-40.
- [8] N. Popescu and A. Zaharescu, On the structure of the irreducible polynomials over local fields, J. Number Theory **52** (1995), no. 1, 98–118.
- $[9]\,$ S. Sen, On automorphisms of local fields, Ann. of Math. (2) $\bf 90$ (1969), 33–46.
- [10] J. P. Serre, Local fields, Graduate Texts in Mathematics, 67, Springer-Verlag, New York-Berlin, 1979.
- [11] J. Tate, $p-divisible\ groups$, 1967 Proc. Conf. Local Fields (Driebergen, 1966) pp. 158–183 Springer, Berlin.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, 1409 W. GREEN STREET, URBANA, IL, 61801, USA *E-mail*: zaharesc@math.uiuc.edu