INTEGRAL BASES OVER p-ADIC FIELDS #### ALEXANDRU ZAHARESCU ABSTRACT. Let p be a prime number, \mathbf{Q}_p the field of p-adic numbers, K a finite extension of \mathbf{Q}_p , \bar{K} a fixed algebraic closure of K and \mathbf{C}_p the completion of \bar{K} with respect to the p-adic valuation. Let E be a closed subfield of \mathbf{C}_p , containing K. Given elements $t_1, \ldots, t_r \in E$ for which the field $K(t_1, \ldots, t_r)$ is dense in E, we construct integral bases of E over K. #### 1. Introduction Let p be a prime number, \mathbf{Q}_p the field of p-adic numbers, K a finite extension of \mathbf{Q}_p , \bar{K} a fixed algebraic closure of K and \mathbf{C}_p the completion of K with respect to the p-adic valuation. Given a finite extension L of K, it is known (see Serre [10], p. 57) that there are elements $\theta \in L$ for which the elements $1, \theta, \theta^2, \dots, \theta^{d-1}$, with d = [L:K], form an integral basis of L over K. In that case one has $O_K[\theta] = O_L$, where O_K, O_L denote the rings of integers in K and respectively L. If an element $\alpha \in L$ is given and we only know that α is a generator of L over K, that is $L = K(\alpha)$, then an integral basis of L over K can be constructed by following the procedure from [8], Remark 4.7. This basis is defined in terms of the so-called saturated distinguished chains for α , which have been introduced in [8], and studied also in [1], [6] and [7]. The shape of such a basis may be useful in practice, for instance it has been used in [5] in order to show that the Ax-Sen constant vanishes for deeply ramified extensions (in the sense of Coates-Greenberg [4]). In this paper we consider the case when several elements $\alpha_1, \ldots, \alpha_r \in L$ are given such that $K(\alpha_1,\ldots,\alpha_r)=L$, and one wants to find an integral basis of L over K. We work in the following more general context. Let E be a closed subfield of C_p , not necessarily finite over K, and let t_1, \ldots, t_r be elements of E such that the field $K(t_1, \ldots, t_r)$ is dense in E. Then we Received September 5, 2002. ²⁰⁰⁰ Mathematics Subject Classification: 11S99. Key words and phrases: p-adic fields, integral bases, admissible polynomials. show how one can construct, in terms of t_1, \ldots, t_r , an integral basis of E over K. In case r=1 such a basis has been constructed in [1]. For a general r, we associate to any $\mathbf{t}=(t_1,\ldots,t_r)\in \mathbf{C}_p^r$ certain sequences $\big(M_k(X_1,\ldots,X_r)\big)_{k\in\mathcal{N}(\mathbf{t})}$ of polynomials in r variables X_1,\ldots,X_r with coefficients in K, and call them normalized sequences for \mathbf{t} over K. Then we show that for any such normalized sequence of polynomials, the sequence $\big(M_k(t_1,\ldots,t_r)\big)_{k\in\mathcal{N}(\mathbf{t})}$ forms an integral basis of E over K. We also consider the effect of the action of the Galois group $Gal_{cont}(\mathbf{C}_p/K)$ on our bases. If $t_1,\ldots,t_r\in \mathbf{C}_p$ and $\sigma\in Gal_{cont}(\mathbf{C}_p/K)$, then the r-tuples (t_1,\ldots,t_r) and $(\sigma(t_1),\ldots,\sigma(t_r))$ produce the same normalized sequences of polynomials. We will show that a converse also holds, and in order to prove that result we first establish a criterion which uses the p-adic valuation to identify the conjugates of a given element $\mathbf{t}\in \mathbf{C}_p^r$. ### 2. Admissible polynomials In what follows K will be a fixed finite extension of \mathbf{Q}_p . Denote by v the p-adic valuation on \mathbf{C}_p , normalized by v(p)=1. Let π_K be a uniformising element of K. If $e(K/\mathbf{Q}_p)$ denotes the ramification index of K over \mathbf{Q}_p , then $v(\pi_K) = \frac{1}{e(K/\mathbf{Q}_p)}$. Next, let us fix an order \leq on \mathbf{N}^r which makes \mathbf{N}^r a well ordered set. One such possible order is to put $\mathbf{m} \leq \mathbf{n}$ provided that $m_1 + \cdots + m_r \leq n_1 + \cdots + n_r$, and to choose the lexicographical order for those r-tuples \mathbf{m} for which the total degree $m_1 + \cdots + m_r$ is the same. Another class of examples of orders is obtained as follows. Let $\eta = (\eta_1, \ldots, \eta_r)$, where η_1, \ldots, η_r are positive real numbers, linearly independent over \mathbf{Q} . Define the η -degree of \mathbf{m} to be (2.1) $$\deg_n \mathbf{m} = \eta_1 m_1 + \dots + \eta_r m_r.$$ Here all the r-tuples $\mathbf{m} \in \mathbf{N}^r$ have distinct degrees. Then set $\mathbf{m} \leq \mathbf{n}$ if and only if $\deg_n \mathbf{m} \leq \deg_n \mathbf{n}$. Let us fix an order on \mathbf{N}^r as above. Arrange the elements of \mathbf{N}^r in increasing oder, $$(2.2) m_0 < m_1 < m_2 < \cdots < m_k < \cdots,$$ where the inequalities in (2.2) are with respect to this fixed order. Let ϕ be the induced monotonic one-to-one map from \mathbf{N} to \mathbf{N}^r , that is, $\phi(k) = \mathbf{m}_k$ for any $k \in \mathbf{N}$. Consider the ring of polynomials in r variables X_1, \ldots, X_r over K. If $k \in \mathbf{N}$ and $\phi(k) = (m_1, \ldots, m_r) \in \mathbf{N}^r$, we define the degree of the monomial $X_1^{m_1} \cdots X_r^{m_r}$ to be $\deg(X_1^{m_1} \cdots X_r^{m_r}) = k$. Thus for each $k \in \mathbb{N}$ there exists exactly one monomial of degree k. For any nonzero polynomial $P(X_1, \ldots, X_r) \in K[X_1, \ldots, X_r]$ we define $\deg P(X_1, \ldots, X_r)$ to be the largest of the degrees of its monomials. We put $\deg 0 = -\infty$. One easily sees that (2.3) $$\deg(P) = 0$$ if and only if $0 \neq P$ is constant, (2.4) $\deg(P+Q) \leq \max\{\deg P, \deg Q\}$, with equality if $\deg P \neq \deg Q$, and (2.5) $$\deg(cP) = \deg P \text{ for any } 0 \neq c \in K.$$ The leading coefficient in a polynomial $P(X_1, \ldots, X_r)$ is the coefficient corresponding to the monomial of highest degree in $P(X_1, \ldots, X_r)$. A polynomial is said to be monic if its leading coefficient is 1. In what follows we work with a fixed order on \mathbf{N}^r as above. Let $\mathbf{t} = (t_1, \dots, t_r) \in \mathbf{C}_p^r$ and let $k \in \mathbf{N}$. We define an admissible polynomial of degree k for \mathbf{t} over K to be any monic polynomial $P(X_1, \dots, X_r) \in K[X_1, \dots, X_r]$ of degree k such that (2.6) $$v(P(t_1, \ldots, t_r)) \ge v(Q(t_1, \ldots, t_r)),$$ for any monic polynomial $Q(X_1, \ldots, X_r) \in K[X_1, \ldots, X_r]$ of degree k. A sequence $(f_k)_{k \in \mathbb{N}}$ with the property that for any k, f_k is an admissible polynomial of degree k for \mathbf{t} over K will be called an admissible sequence of polynomials for \mathbf{t} over K. The existence of admissible sequences of polynomials for any $\mathbf{t} \in \mathbb{C}_p^r$ follows from the next lemma. LEMMA 1. Fix a finite extension K of \mathbf{Q}_p and an order on \mathbf{N}^r as above. Then, for any $\mathbf{t} \in \mathbf{C}_p^r$ and any $k \in \mathbf{N}$ there exists an admissible polynomial of degree k for \mathbf{t} over K. *Proof.* Let $$\mathbf{t} = (t_1, \dots, t_r) \in \mathbf{C}_p^r$$ and $k \in \mathbf{N}$. Denote (2.7) $$\gamma_k(\mathbf{t}) = \sup\{v(G(t_1, \dots, t_r)) : G \in K[X_1, \dots, X_r], G \text{ monic, deg } G = k\}.$$ Here $\gamma_k(\mathbf{t}) \in (-\infty, \infty]$. In order to finish the proof of the lemma we need to show that the supremum on the right side of (2.7) is attained. Let $(\rho_m)_{m \in \mathbf{N}}$ be a strictly increasing sequence of real numbers with $\lim_{m \to \infty} \rho_m = \gamma_k(\mathbf{t})$. For any m, denote (2.8) $$\mathcal{F}_m = \{ f \in K[X_1, \dots, X_r] : f \text{ monic, deg } f = k, v(f(t_1, \dots, t_r)) \ge \rho_m \}.$$ Evidently one has the inclusions $\mathcal{F}_0 \supseteq \mathcal{F}_1 \supseteq \cdots \supseteq \mathcal{F}_m \supseteq \cdots$. Since $\rho_m < \gamma_k(\mathbf{t})$ for any m, it follows that all the sets \mathcal{F}_m are nonempty. For any nonzero polynomial $f(X_1, \ldots, X_r) \in K[X_1, \ldots, X_r]$, let $b(f) \in \mathbf{Z}$ denote the smallest integer number for which the polynomial $\pi_K^{b(f)} f(X_1, \ldots, X_r)$ belongs to $O_K[X_1, \ldots, X_r]$. Note that if $f(X_1, \ldots, X_r)$ is monic then $b(f) \geq 0$. Next, for any $m \in \mathbf{N}$ we set $$(2.9) b_m = \min\{b(f) : f(X_1, \dots, X_r) \in \mathcal{F}_m\}.$$ One clearly has $0 \le b_0 \le b_1 \le \cdots \le b_m \le \cdots$. We claim that there is a natural number m^* such that $$(2.10) b_{m^*} = b_{m^*+1} = \dots = b_m = \dots.$$ In order to prove the claim, let us choose for any $m \in \mathbb{N}$ a polynomial $f_m(X_1,\ldots,X_r)\in\mathcal{F}_m$ for which the minimum is attained on the right side of (2.9). Thus $b(f_m) = b_m$. Denote $g_m = \pi_K^{b_m} f_m$, so that $g_m \in O_K[X_1,\ldots,X_r]$ and g_m is primitive for any m. Let us assume that $b_m \to \infty$ as $m \to \infty$. Consider the sequence of polynomials $(g_m)_{m\in\mathbb{N}}$. Since O_K is compact, there exists a subsequence $(g_{m_j})_{j\in\mathbb{N}}$ of $(g_m)_{m\in\mathbb{N}}$ for which the sequence of coefficients corresponding to any given monomial is convergent. In the limit we obtain a polynomial $g(X_1,\ldots,X_r)\in O_K[X_1,\ldots,X_r]$, which is also primitive, and hence it is not the zero polynomial. Note that the leading coefficient of g_m equals $\pi_K^{b_m}$, which goes to zero as $m \to \infty$, by the above assumption that $\lim_{m\to\infty} b_m = \infty$. Therefore the degree of $g(X_1,\ldots,X_r)$ will be strictly smaller than k. As a consequence, for any $m \in \mathbb{N}$ the polynomial $h_m := f_m - \pi_K^{-b_m} g$ will be monic and of degree k. On the other hand, along the subsequence $(m_j)_{j\in\mathbb{N}}$ we have $g_{m_j}(t_1,\ldots,t_r)\to g(t_1,\ldots,t_r)$. Thus $v(g_{m_i}(t_1,\ldots,t_r)) \to v(g(t_1,\ldots,t_r))$ as $j\to\infty$. Since $$(2.11) v(g_{m_j}(t_1,\ldots,t_r)) = v(\pi_K^{b_{m_j}} f_m(t_1,\ldots,t_r)) \ge \frac{b_{m_j}}{e(L/K)} + \rho_{m_j},$$ and since the right side of (2.11) goes to infinity as $j \to \infty$, we deduce that $g(t_1, \ldots, t_r) = 0$. Therefore $$(2.12) v(h_m(t_1, \ldots, t_r)) = v(f_m(t_1, \ldots, t_r)) \ge \rho_m,$$ for any $m \in \mathbb{N}$. Choose now a j large enough so that each coefficient of the polynomial $(g_{m_j}(X_1,\ldots,X_r)-g(X_1,\ldots,X_r))$ is divisible by π_K . Then $\pi_K^{b_{m_j}-1}h_{m_j} = \frac{1}{\pi_K}(g_{m_j}-g) \in O_K[X_1,\ldots,X_r]$. This contradicts the definition of b_{m_j} , since h_{m_j} is monic, of degree k, and by (2.12) it follows that $h_{m_j} \in \mathcal{F}_{m_j}$. This proves (2.10). Next, from (2.10) and the fact that $\pi^{-b_{m^*}}O_K$ is compact, it follows that if we choose for each $m \geq m^*$ a polynomial $f_m \in \mathcal{F}_m$ satisfying $b(f_m) = b_m = b_{m^*}$, there is a subsequence $(f_{m_j})_{j \in \mathbb{N}}$ of $(f_m)_{m \in \mathbb{N}}$ which converges to a polynomial $f \in K[X_1, \ldots, X_r]$. This polynomial f is monic, of degree k, and one has $\lim_{j \to \infty} f_{m_j}(t_1, \ldots, t_r) = f(t_1, \ldots, t_r)$. Since $v(f_{m_j}(t_1, \ldots, t_r)) \geq \rho_{m_j}$ for any f, we see that $v(f(t_1, \ldots, t_r)) = \gamma_k(\mathbf{t})$, and this completes the proof of the lemma. ## 3. Integral bases Let us fix K and an order on \mathbf{N}^r as before, and choose a $\mathbf{t} = (t_1, \ldots, t_r) \in \mathbf{C}_p^r$. Let $(f_k)_{k \in \mathbf{N}}$ be an admissible sequence of polynomials for \mathbf{t} over K, and let $\gamma_k(\mathbf{t})$ be defined by (2.7). Thus $$(3.1) v(f_k(t_1,\ldots,t_r)) = \gamma_k(\mathbf{t}),$$ for any $k \in \mathbb{N}$. Denote (3.2) $$\mathcal{N}(\mathbf{t}) = \{ k \in \mathbf{N} : \gamma_k(\mathbf{t}) < \infty \}.$$ Thus $f_k(t_1, ..., t_r) \neq 0$ for any $k \in \mathcal{N}(\mathbf{t})$, and $f_k(t_1, ..., t_r) = 0$ for any $k \in \mathbf{N} \setminus \mathcal{N}(\mathbf{t})$. Next, for any $k \in \mathcal{N}(\mathbf{t})$ let $l_k = [e(K/\mathbf{Q}_p) \cdot \gamma_k(\mathbf{t})] \in \mathbf{Z}$, where $[\cdot]$ denotes the integer part function. Then set (3.3) $$M_k(X_1, \dots, X_r) = \pi_K^{-l_k} f_k(X_1, \dots, X_r) \in K[X_1, \dots, X_r].$$ Note that $v(M_k(t_1,\ldots,t_r)) \geq 0$ while $v(\frac{1}{\pi_K}M_k(t_1,\ldots,t_r)) < 0$, for any $k \in \mathcal{N}(\mathbf{t})$. We call the sequence $(M_k(X_1,\ldots,X_r))_{k \in \mathcal{N}(\mathbf{t})}$ a normalized sequence of polynomials for \mathbf{t} over K. Here the set $\mathcal{N}(\mathbf{t})$ may be finite or infinite. Let $E \subseteq \mathbf{C}_p$ denote the completion of the field $K(t_1,\ldots,t_r)$, and $O_E = \{z \in E : v(z) \geq 0\}$ the ring of integers of E. We show that for any normalized sequence $(M_k(X_1,\ldots,X_r))_{k \in \mathcal{N}(\mathbf{t})}$ for \mathbf{t} over K, the sequence $(M_k(t_1,\ldots,t_r))_{k \in \mathcal{N}(\mathbf{t})}$ forms an integral basis of E over K. THEOREM 1. Let K be a finite extension of \mathbf{Q}_p and fix an order on \mathbf{N}^r which makes \mathbf{N}^r a well ordered set. Choose a $\mathbf{t} = (t_1, \ldots, t_r) \in \mathbf{C}_p^r$ and let E denote the closure of the field $K(t_1, \ldots, t_r)$ in \mathbf{C}_p . Then for any normalized sequence of polynomials $(M_k(X_1, \ldots, X_r))_{k \in \mathcal{N}(\mathbf{t})}$ for \mathbf{t} over K, the sequence $(M_k(t_1, \ldots, t_r))_{k \in \mathcal{N}(\mathbf{t})}$ forms an integral basis of E over K. More precisely: (i) For any $y \in E$ there exists a unique sequence $(c_k)_{k \in \mathcal{N}(\mathbf{t})}$ in K, with $c_k \to 0$ as $k \to \infty$, such that $y = \sum_k c_k M_k(t_1, \ldots, t_r)$. (ii) Let $y \in E$, $y = \sum_k c_k M_k(t_1, \ldots, t_r)$, with $c_k \in K$ for all $k \in \mathcal{N}(\mathbf{t})$ and $c_k \to 0$ as $k \to \infty$. Then $v(y) = \min_k v(c_k M_k(t_1, \ldots, t_r))$. (iii) Let $y \in E$. Then $y \in O_E$ if and only if $y = \sum_k c_k M_k(t_1, \ldots, t_r)$ with $c_k \in O_K$ for all $k \in \mathcal{N}(\mathbf{t})$ and $c_k \to 0$ as $k \to \infty$. *Proof.* It is easy to see that (iii) follows from (i), (ii) and the fact that for any $k \in \mathcal{N}(\mathbf{t})$ and $c \in K$, one has $cM_k(t_1, \ldots, t_r) \in O_E$ if and only if $c \in O_K$. We now proceed to prove (ii). Let $y \in E$, $y = \sum_k c_k M_k(t_1, \ldots, t_r)$ with $c_k \in K$ for all $k \in \mathcal{N}(\mathbf{t})$ and $c_k \to 0$ as $k \to \infty$. We need to show that (3.4) $$v(y) = \min_{k \in \mathcal{N}(\mathbf{t})} v(c_k M_k(t_1, \dots, t_r)).$$ Note that the minimum is attained on the right side of (3.4) since $v(c_k) \to \infty$ as $k \to \infty$. Let $d \in \mathcal{N}(\mathbf{t})$ be the largest natural number for which $v(c_d M_d(t_1, \ldots, t_r)) = \min_k v(c_k M_k(t_1, \ldots, t_r))$. We clearly have $v(y) \geq v(c_d M_d(t_1, \ldots, t_r))$. Let us assume that $v(y) > v(c_d M_d(t_1, \ldots, t_r))$. Write y in the form $y = y_1 + y_2$, where $y_1 = \sum_{k \leq d} c_k M_k(t_1, \ldots, t_r)$ and $y_2 = \sum_{k \geq d} c_k M_k(t_1, \ldots, t_r)$. Since $v(c_k M_k(t_1, \ldots, t_r)) > v(c_d M_d(t_1, \ldots, t_r))$ for any k > d, it follows that $v(y_2) > v(c_d M_d(t_1, \ldots, t_r))$. Thus $v(y_1) \geq \min\{v(y), v(y_2)\} > v(c_d M_d(t_1, \ldots, t_r))$. Consider the polynomial (3.5) $$G(X_1, \dots, X_r) = \frac{\pi_K^{l_d}}{c_d} \sum_{k < d} c_k M_k(X_1, \dots, X_r) \in K[X_1, \dots, X_r].$$ Let us remark that $G(X_1, \ldots, X_r)$ is monic, of degree d, and (3.6) $$v(G(t_1,\ldots,t_r)) = v\left(\frac{\pi_K^{l_d}}{c_d}y_1\right) > v(\pi_K^{l_d}M_d(t_1,\ldots,t_r)).$$ This contradicts the fact that $\pi_K^{l_d}M_d(X_1,\ldots,X_r)$ is an admissible polynomial of degree d for \mathbf{t} over K. Therefore (3.4) holds true, and this proves (ii). It remains to prove (i). Let $y \in E$. We want to find a sequence $(c_k)_{k \in \mathcal{N}(\mathbf{t})}$ in K with $c_k \to 0$ as $k \to \infty$, such that $y = \sum_k c_k M_k(t_1, \ldots, t_r)$. By Theorem 7 from [2] we know that the ring $K[t_1, \ldots, t_r]$ is dense in the closure E of the field $K(t_1, \ldots, t_r)$. Choose a sequence of polynomials $(P_m(X_1, \ldots, X_r))_{m \in \mathbb{N}}$ in $K[X_1, \ldots, X_r]$ such that (3.7) $$P_m(t_1,\ldots,t_r)\to y \text{ as } m\to\infty.$$ For each $m \in \mathbb{N}$ denote $d_m = \deg P_m(X_1, \ldots, X_r)$. Let $(f_k)_{k \in \mathbb{N}}$ be an admissible sequence of polynomials for \mathbf{t} over K, with $f_k(X_1, \ldots, X_r) =$ $\pi_K^{l_k}M_k(X_1,\ldots,X_r)$ for any $k\in\mathcal{N}(\mathbf{t})$, while for $k\notin\mathcal{N}(\mathbf{t})$ we allow f_k to be any admissible polynomial of degree k for \mathbf{t} over K. Next, we write each polynomial P_m as a finite linear combination of our admissible sequence of polynomials $(f_k)_{k\in\mathbb{N}}$, (3.8) $$P_m(X_1, \dots, X_r) = \sum_{j=0}^{d_m} a_{m,j} f_j(X_1, \dots, X_r).$$ Since $f_j(t_1, ..., t_r) = 0$ for $j \notin \mathcal{N}(\mathbf{t})$, from (3.8) we derive (3.9) $$P_m(t_1, \dots, t_r) = \sum_{\substack{0 \le j \le d_m \\ j \in \mathcal{N}(\mathbf{t})}} a_{m,j} f_j(t_1, \dots, t_r).$$ We put (3.9) in the form (3.10) $$P_m(t_1, ..., t_r) = \sum_{j \in \mathcal{N}(\mathbf{t})} c_{m,j} M_j(t_1, ..., t_r),$$ for any $m \in \mathbb{N}$, where $c_{m,j} = \pi_K^{l_j} a_{m,j}$ for $j \leq d_m$ and $c_{m,j} = 0$ for $j > d_m$. The sequence $\left(P_m(t_1, \ldots, t_r)\right)_{m \in \mathbb{N}}$ being convergent, by (ii) it follows that for each $j \in \mathcal{N}(\mathbf{t})$ the sequence $\left(c_{m,j}\right)_{m \in \mathbb{N}}$ is a Cauchy sequence in K. Let $c_j = \lim_{m \to \infty} c_{m,j} \in K$. We claim that $c_j \to 0$ as $j \to \infty$. Indeed, fix an $\epsilon > 0$ and choose an $m_{\epsilon} \in \mathbb{N}$ such that $v(y - P_m(t_1, \ldots, t_r)) \geq \frac{1}{\epsilon}$ for any $m \geq m_{\epsilon}$. Then for any $j \in \mathcal{N}(\mathbf{t})$ and any $m, n \geq m_{\epsilon}$ we have on one hand (3.11) $$v(P_m(t_1, \dots, t_r) - P_n(t_1, \dots, t_r))$$ $$\geq \min\{v(y - P_m(t_1, \dots, t_r)), v(y - P_n(t_1, \dots, t_r))\} \geq \frac{1}{\epsilon},$$ and on the other hand we have (3.12) $$v(P_{m}(t_{1},...,t_{r}) - P_{n}(t_{1},...,t_{r}))$$ $$= \min_{k \in \mathcal{N}(\mathbf{t})} v((c_{m,k} - c_{n,k}) M_{k}(t_{1},...,t_{r}))$$ $$\leq v(c_{m,j} - c_{n,j}) + v(M_{j}(t_{1},...,t_{r}))$$ $$< v(c_{m,j} - c_{n,j}) + \frac{1}{e(K/Q_{p})}.$$ Combining (3.11) and (3.12) we find that (3.13) $$v(c_{m,j} - c_{n,j}) > \frac{1}{\epsilon} - \frac{1}{e(K/Q_p)}.$$ If we let $n \to \infty$ while keeping j and m fixed, from (3.13) it follows that (3.14) $$v(c_{m,j} - c_j) > \frac{1}{\epsilon} - \frac{1}{e(K/\mathbf{Q}_p)},$$ for any $m \geq m_{\epsilon}$ and any $j \in \mathcal{N}(\mathbf{t})$. In particular, for $m = m_{\epsilon}$ and $j > d_{m_{\epsilon}}$ one has $c_{m_{\epsilon},j} = 0$, and (3.14) implies $$(3.15) v(c_j) > \frac{1}{\epsilon} - \frac{1}{e(K/\mathbf{Q}_p)},$$ for any $\epsilon > 0$ and any $j > d_{m_{\epsilon}}$. This shows that $c_j \to 0$ as $j \to \infty$. Let us consider the element $z \in E$ given by (3.16) $$z = \sum_{k \in \mathcal{N}(\mathbf{t})} c_k M_k(t_1, \dots, t_r).$$ Using (ii) it follows from (3.14) that for any $\epsilon > 0$ and any $m \geq m_{\epsilon}$ one has (3.17) $$v(P_m(t_1,\ldots,t_r)-z)=\min_{j\in\mathcal{N}(\mathbf{t})}v((c_{m,j}-c_j)M_j(t_1,\ldots,t_r))\geq \frac{1}{\epsilon}-\frac{1}{e(K/\mathbf{Q}_p)}.$$ Therefore $P_m(t_1, \ldots, t_r) \to z$ as $m \to \infty$. Comparing this with (3.7) we see that z = y, and (3.16) gives the desired expression of y in terms of our sequence $(M_k(t_1, \ldots, t_r))_{k \in \mathcal{N}(\mathbf{t})}$. Lastly, the uniqueness of such an expression follows easily from (ii). This completes the proof of the theorem. # 4. Conjugates and normalized sequences of polynomials We keep the notations from previous sections. Denote as usual the group of continuous automorphisms of \mathbf{C}_p over K by $Gal_{cont}(\mathbf{C}_p/K)$. If $\mathbf{t} = (t_1, \ldots, t_r), \mathbf{t}' = (t'_1, \ldots, t'_r) \in \mathbf{C}_p^r$ and if there exists $\sigma \in Gal_{cont}(\mathbf{C}_p/K)$ such that $\sigma(t_j) = t'_j$ for any $j \in \{1, \ldots, r\}$ we say that \mathbf{t} and \mathbf{t}' are conjugate over K. Note that if \mathbf{t} and \mathbf{t}' are conjugate over K then $\mathcal{N}(\mathbf{t}) = \mathcal{N}(\mathbf{t}')$, and a sequence $(M_k(X_1, \ldots, X_r))_{k \in \mathcal{N}(\mathbf{t})}$ is a normalized sequence of polynomials for \mathbf{t} over K if and only if it is a normalized sequence of polynomials for \mathbf{t}' over K. We ask whether a converse of this statement also holds. In order to provide an answer to this question we first prove the following lemma, which generalizes the criterion from Remark 3.6 of [1]. LEMMA 2. Let $\mathbf{t} = (t_1, \dots, t_r), \mathbf{t}' = (t'_1, \dots, t'_r)$ be elements of C_p^r . Then \mathbf{t} and \mathbf{t}' are conjugate over K if and only if $v(P(t_1, \dots, t_r)) = v(P(t'_1, \dots, t'_r))$ for any polynomial $P(X_1, \dots, X_r) \in K[X_1, \dots, X_r]$. Proof. If $\mathbf{t}=(t_1,\ldots,t_r), \mathbf{t}'=(t_1',\ldots,t_r')$ are conjugate over K then evidently $P(t_1,\ldots,t_r)$ and $P(t_1',\ldots,t_r')$ are conjugate over K, and so they have the same valuation. Conversely, let us assume that $\mathbf{t}=(t_1,\ldots,t_r),\mathbf{t}'=(t_1',\ldots,t_r')\in \mathbf{C}_p^r$ are such that $v(P(t_1,\ldots,t_r))=v(P(t_1',\ldots,t_r'))$ for any $P(X_1,\ldots,X_r)\in K[X_1,\ldots,X_r]$. We denote by E the closure of the field $K(t_1,\ldots,t_r)$ in \mathbf{C}_p , and by E' the closure of $K(t_1',\ldots,t_r')$ in \mathbf{C}_p . By Theorem 7 from [2] we know that $K[t_1,\ldots,t_r]$ is dense in E and $K[t_1',\ldots,t_r']$ is dense in E'. Next, let us consider the canonical morphisms of rings $\phi:K[X_1,\ldots,X_r]\to K[t_1,\ldots,t_r]$ and $\phi':K[X_1,\ldots,X_r]\to K[t_1',\ldots,t_r']$ given by $\phi(P(X_1,\ldots,X_r))=P(t_1,\ldots,t_r)$ and respectively $\phi'(P(X_1,\ldots,X_r))=P(t_1',\ldots,t_r')$, for any $P(X_1,\ldots,X_r)\in K[X_1,\ldots,X_r]$. Let us observe that (4.1) Ker $$\phi = \{P(X_1, \dots, X_r) \in K[X_1, \dots, X_r] : v(P(t_1, \dots, t_r)) = \infty\}$$ = $\{P(X_1, \dots, X_r) \in K[X_1, \dots, X_r] : v(P(t'_1, \dots, t'_r)) = \infty\} = \text{Ker } \phi'.$ Therefore one has an isomorphism of rings $\psi: K[t_1, \ldots, t_r] \to K[t'_1, \ldots, t_r]$ t'_r , given by $\psi(P(t_1,\ldots,t_r))=P(t'_1,\ldots,t'_r)$ for any polynomial $P(X_1,\ldots,t'_r)$ $\ldots, X_r \in K[X_1, \ldots, X_r]$. By our assumption on t and t', the isomorphism ψ is also an isometry, and so it extends by continuity to an isomorphism $\psi: E \to E'$. We know from Galois theory in \mathbf{C}_p , as developed by Tate [11], Sen [9], Ax [3], that the closed subfields of C_p are in one-to-one correspondence with the subfields of K. Thus if we take the algebraic part in E and E', say $L = E \cap \bar{K}$ and $L' = E' \cap \bar{K}$, then E and E' can be recovered from the fields L and L' by taking the topological closure in C_p . Now clearly by restriction ψ produces an isomorphism between L and L', which fixes K. We extend this isomorphism to an automorphism σ of \bar{K} over K, and then we extend σ by continuity to an element of $Gal_{cont}(\mathbf{C}_p/K)$, which we continue to denote by σ . Since ψ and σ have the same restriction to L, and since L is dense in E, it follows that the restriction of σ to E coincides with ψ . In particular $\sigma(t_j) = t_j'$ for any $j \in \{1, \dots, r\}$, and the lemma is proved. We are now ready to prove the following result. THEOREM 2. Let K be a finite extension of \mathbf{Q}_p and fix an order on \mathbf{N}^r which makes \mathbf{N}^r a well ordered set. Let \mathbf{t} and \mathbf{t}' be elements of \mathbf{C}_p^r such that they have a common normalized sequence of polynomials over K, and such that for any $k \in \mathbf{N} \setminus \mathcal{N}(\mathbf{t})$, \mathbf{t} and \mathbf{t}' have a common admissible polynomial of degree k over K. Then \mathbf{t} and \mathbf{t}' are conjugate over K. Let us remark that in the statement of Theorem 2 it is not enough to assume that \mathbf{t} , \mathbf{t}' have a common normalized sequence of polynomials over K, in order to conclude that they are conjugate over K. For instance, if r=1 and t is a root of an Eisenstein polynomial $P(X)=X^d+a_1X^{d-1}+\cdots+a_{d-1}X+a_d\in O_K[X]$, then, with the natural order on \mathbf{N} , $\mathcal{N}(\mathbf{t})=\{0,1,\ldots,d-1\}$, and a normalized sequence of polynomials for t over K is given by $M_k(X)=X^k$, $k\in\{0,1,\ldots,d-1\}$. Thus if t' is a root of another Eisenstein polynomial of same degree d over K, then t,t' will not be conjugate over K while they do have a common normalized sequence of polynomials $(X^k)_{0\leq k\leq d-1}$. In case t is transcendental over K, or more generally in case $\mathbf{t}=(t_1,\ldots,t_r)\in \mathbf{C}_p^r$ with t_1,\ldots,t_r algebraically independent over K, the set $\mathcal{N}(\mathbf{t})$ will coincide with \mathbf{N} , and Theorem 2 reduces to the following corollary. COROLLARY 1. Let K be a finite extension of \mathbf{Q}_p and fix an order on \mathbf{N}^r which makes \mathbf{N}^r a well ordered set. Let $\mathbf{t} = (t_1, \ldots, t_r) \in \mathbf{C}_p^r$ with t_1, \ldots, t_r algebraically independent over K. If $\mathbf{t}' \in \mathbf{C}_p^r$ is such that \mathbf{t} , \mathbf{t}' have a common normalized sequence of polynomials over K, then \mathbf{t} and \mathbf{t}' are conjugate over K. Proof of Theorem 2. Let $\mathbf{t}, \mathbf{t}' \in \mathbf{C}_p^r$ be as in the statement of the theorem. Let $(M_k(X_1, \ldots, X_r))_{k \in \mathcal{N}(\mathbf{t})}$ be a common normalized sequence of polynomials for both \mathbf{t} and \mathbf{t}' over K, and choose for any $k \in \mathbf{N} \setminus \mathcal{N}(\mathbf{t})$ a common admissible polynomial f_k of degree k for both \mathbf{t} and \mathbf{t}' over K. For any $j \in \mathcal{N}(\mathbf{t})$, the leading coefficient of $M_j(X_1, \ldots, X_r)$ will equal $\pi_K^{-l_j}$ for some $l_j \in \mathbf{Z}$. Then $f_j(X_1, \ldots, X_r) := \pi_K^{l_j} M_j(X_1, \ldots, X_r)$ will be a common admissible polynomial of degree j for both \mathbf{t} and \mathbf{t}' over K. We have then a common admissible sequence of polynomials $(f_k)_{k \in \mathbf{N}}$ for both \mathbf{t} and \mathbf{t}' over K. Take now an arbitrary polynomial $g(X_1, \ldots, X_r) \in K[X_1, \ldots, X_r]$ and write it as a linear combination (4.2) $$g(X_1, \dots, X_r) = \sum_{j=0}^d a_j f_j(X_1, \dots, X_r),$$ where $d = \deg g(X_1, \ldots, X_r)$. Since $f_j(t_1, \ldots, t_r) = f_j(t'_1, \ldots, t'_r) = 0$ for any $j \in \mathbb{N} \setminus \mathcal{N}(\mathbf{t})$, from (4.2) it follows that $$(4.3) g(t_1,\ldots,t_r) = \sum_{\substack{0 \le j \le d \\ j \in \mathcal{N}(t)}} c_j M_j(t_1,\ldots,t_r),$$ and (4.4) $$g(t'_1, \dots, t'_r) = \sum_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} c_j M_j(t'_1, \dots, t'_r),$$ where $c_j = \pi_K^{l_j} a_j$ for $0 \le j \le d$, $j \in \mathcal{N}(\mathbf{t})$. Recall that for any j one has $0 \le v(M_j(t_1, \ldots, t_r)), v(M_j(t_1', \ldots, t_r')) < v(\pi_K) = 1/e(K/Q_p)$. Therefore, by combining (4.3), (4.4) with Theorem 1, (ii) we find that (4.5) $$\min_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} v(c_j) \le \min_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} v(c_j M_j(t_1, \dots, t_r))$$ $$= v(g(t_1, \dots, t_r)) < \frac{1}{e(K/\mathbf{Q}_p)} + \min_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} v(c_j),$$ and similarly $$\frac{\min\limits_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} v(c_j) \le \min\limits_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} v(c_j M_j(t'_1, \dots, t'_r)) = v(g(t'_1, \dots, t'_r)) < \frac{1}{e(K/\mathbf{Q}_p)} + \min\limits_{\substack{0 \le j \le d \\ j \in \mathcal{N}(\mathbf{t})}} v(c_j).$$ By (4.5) and (4.6) it follows that for any $g \in K[X_1, ..., X_r]$. We now fix a polynomial $P(X_1, ..., X_r) \in K[X_1, ..., X_r]$ and apply (4.7) with $g = P^n$ for some large natural number n. We find that (4.8) $$\frac{2}{e(K/\mathbf{Q}_p)} > |v(g(t_1, \dots, t_r)) - v(g(t'_1, \dots, t'_r))|$$ $$= n |v(P(t_1, \dots, t_r)) - v(P(t'_1, \dots, t'_r))|.$$ Letting $n \to \infty$ in (4.8) we obtain (4.9) $$v(P(t_1, \dots, t_r)) = v(P(t'_1, \dots, t'_r)).$$ Since (4.9) holds for any polynomial $P(X_1, ..., X_r) \in K[X_1, ..., X_r]$, from Lemma 2 it follows that \mathbf{t} and \mathbf{t}' are conjugate over K, and this completes the proof of the theorem. ### References [1] V. Alexandru, N. Popescu and A. Zaharescu, On the closed subfields of C_p , J. Number Theory **68** (1998), no. 2, 131–150. - [2] V. Alexandru, N. Popescu and A. Zaharescu, The generating degree of C_p , Canad. Math. Bull. 44 (2001), no. 1, 3–11. - [3] J. Ax, Zeros of Polynomials Over Local Fields. The Galois Action, J. Algebra 15 (1970), 417–428. - [4] J. Coates and R. Greenberg, Kummer theory for abelian varieties over local fields, Invent. Math. 124 (1996), no. 1-3, 129–174. - [5] A. Iovita and A. Zaharescu, Galois theory of B_{dR}^+ , Compositio Math. 117 (1999), no. 1, 1–31. - [6] K. Ota, On saturated distinguished chains over a local field, J. Number Theory **79** (1999), no. 2, 217–248. - [7] A. Popescu, N. Popescu, M. Vajaitu and A. Zaharescu, Chains of metric invariants over a local field, Acta Arith. 103 (2002), no. 1, 27-40. - [8] N. Popescu and A. Zaharescu, On the structure of the irreducible polynomials over local fields, J. Number Theory **52** (1995), no. 1, 98–118. - $[9]\,$ S. Sen, On automorphisms of local fields, Ann. of Math. (2) $\bf 90$ (1969), 33–46. - [10] J. P. Serre, Local fields, Graduate Texts in Mathematics, 67, Springer-Verlag, New York-Berlin, 1979. - [11] J. Tate, $p-divisible\ groups$, 1967 Proc. Conf. Local Fields (Driebergen, 1966) pp. 158–183 Springer, Berlin. DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, 1409 W. GREEN STREET, URBANA, IL, 61801, USA *E-mail*: zaharesc@math.uiuc.edu