# ON WEYL SPECTRA OF ALGEBRAICALLY TOTALLY-PARANORMAL OPERATORS

# JIN CHUN KIM

Dedicated to Professor Yong Tae Kim on his 65th birthday

ABSTRACT. In this paper we show that Weyl's theorem holds for f(T) when an Hilbert space operator T is "algebraically totally-paranormal" and f is any analytic function on an open neighborhood of the spectrum of T.

#### 1. Introduction

Throughout this paper let  $\mathcal{L}(\mathcal{H})$  denote the algebra of bounded linear operators acting on an infinite dimensional Hilbert space  $\mathcal{H}$ . If  $T \in \mathcal{L}(\mathcal{H})$  write N(T) and R(T) for the null space and range of T;  $\sigma(T)$  for the spectrum of T;  $\pi_0(T)$  for the set of eigenvalues of T;  $\pi_{00}(T)$  for the isolated points of  $\sigma(T)$  which are eigenvalues of finite multiplicity. Recall ([5], [7]) that an operator  $T \in \mathcal{L}(\mathcal{H})$  is called Fredholm if it has closed range with finite dimensional null space and its range of finite co-dimension. The index of a Fredholm operator  $T \in \mathcal{L}(\mathcal{H})$  is given by

$$\operatorname{ind}(T) = \dim N(T) - \dim R(T)^{\perp} \ (= \dim N(T) - \dim N(T^*)).$$

An operator  $T \in \mathcal{L}(\mathcal{H})$  is called Weyl if it is Fredholm of index zero. An operator  $T \in \mathcal{L}(\mathcal{H})$  is called Browder if it is Fredholm "of finite ascent and descent": equivalently, if T is Fredholm and  $T - \lambda I$  is invertible for sufficiently small  $\lambda \neq 0$  in  $\mathbb{C}$ . The essential spectrum  $\sigma_e(T)$ , the

Received January 20, 2002.

<sup>2000</sup> Mathematics Subject Classification: Primary 47A53; Secondary 47B20. Key words and phrases: Weyl's theorem, algebraically totally-paranormal operators.

Weyl spectrum  $\omega(T)$  and the Browder spectrum  $\sigma_b(T)$  of  $T \in \mathcal{L}(\mathcal{H})$  are defined by

$$\sigma_e(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Fredholm}\},$$

$$\omega(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl}\},$$

$$\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder}\},$$

$$\sigma_e(T) \subseteq \omega(T) \subseteq \sigma_b(T) = \sigma_e(T) \cup \operatorname{acc} \sigma(T),$$

where we write acc **K** for the accumulation points of **K**  $\subseteq$   $\mathbb{C}$ . Following Coburn ([1]) we say that Weyl's theorem holds for  $T \in \mathcal{L}(\mathcal{H})$  if there is equality

$$\sigma(T) \setminus \omega(T) = \pi_{00}(T).$$

An operator  $T \in \mathcal{L}(\mathcal{H})$  is called *isoloid* if every isolated point of  $\sigma(T)$  is an eigenvalue of T. Recall ([8]) that an operator  $T \in \mathcal{L}(\mathcal{H})$  is said to be *totally-paranormal* if

$$||(T-\lambda)x||^2 \le ||(T-\lambda)^2x||||x||$$
 for all  $x \in \mathcal{H}$  and  $\lambda \in \mathbb{C}$ .

We shall say that the operator  $T \in \mathcal{L}(\mathcal{H})$  is algebraically totally-paranormal if there exists a nonconstant complex polynomial p such that p(T) is totally-paranormal. Evidently,

 $\{\text{hyponormal operators}\}\subseteq \{\text{totally-paranormal operators}\}$ 

and

{algebraically hyponormal operators}

 $\subseteq$  {algebraically totally-paranormal operators}.

From well-known facts (cf. [8]) of totally-paranormal operators we easily see that

- (a) If  $T \in \mathcal{L}(\mathcal{H})$  is algebraically totally-paranormal, then so is  $T \lambda I$  for each  $\lambda \in \mathbb{C}$ .
- (b) If  $T \in \mathcal{L}(\mathcal{H})$  is algebraically totally-paranormal and  $\mathcal{M} \subseteq \mathcal{H}$  is invariant under T, then  $T|\mathcal{M}$  is algebraically totally-paranormal.
  - (c) Unitary equivalence preserves algebraical totally-paranormality.

In [4] Han and Lee showed that Weyl's theorem holds for f(T) when T is an algebraically hyponormal operator and f is an analytic function on an open neighborhood of  $\sigma(T)$ .

In this paper we extend this result to algebraically totally-paranormal operators: our proof however differs from the correspondence in [4], in that we employ techniques from local spectral theory.

The following is our main result.

THEOREM. If  $T \in \mathcal{L}(\mathcal{H})$  is algebraically totally-paranormal, then for every  $f \in H(\sigma(T))$ , Weyl's theorem holds for f(T), where  $H(\sigma(T))$  denotes the set of analytic functions on an open neighborhood of  $\sigma(T)$ .

## 2. Proofs

The following two lemmas give important and essential facts for algebraically totally-paranormal operators but its proofs are routine and similar to that of Han and Lee ([4]). Thus we shall just state them without proofs.

The following result is an extension of [4, Lemma 1] to algebraically totally-paranormal operators.

LEMMA 1. Suppose  $T \in \mathcal{L}(\mathcal{H})$ .

- (i) If T is algebraically totally-paranormal and quasinilpotent, then T is nilpotent.
  - (ii) If T is algebraically totally-paranormal, then T is isoloid.
  - (iii) If T is algebraically totally-paranormal, then T has finite ascent.

The following result is an extension of [4, Theorem 3] to algebraically totally-paranormal operators.

LEMMA 2. If  $T \in \mathcal{L}(\mathcal{H})$  is algebraically totally-paranormal, then

$$\omega(f(T)) = f(\omega(T))$$
 for every  $f \in H(\sigma(T))$ .

To state next lemma we need some notions from local spectral theory. We say that  $T \in \mathcal{L}(\mathcal{H})$  has the *single valued extension property* (SVEP) if there is implication, for arbitrary open sets  $U \subseteq \mathbb{C}$  and holomorphic functions  $f: U \to \mathcal{H}$ ,

$$(T-zI)f(z) = 0$$
 on  $U \implies f(z) = 0$  on  $U$ .

If this holds for a neighborhood U of  $\lambda \in \mathbb{C}$  we say that T has the SVEP at  $\lambda$ .

We introduce two important subsets of  $\mathcal{H}$ . If  $T \in \mathcal{L}(\mathcal{H})$  and F is a closed set in  $\mathbb{C}$ , we define

$$\mathcal{H}_T(F) = \{x \in \mathcal{H} : \text{there exists an analytic } \mathcal{H}\text{-valued function}$$
  
 $f: \mathbb{C} \setminus F \longrightarrow \mathcal{H} \text{ such that } (T - \lambda)f(\lambda) = x\}.$ 

Then  $\mathcal{H}_T(F)$  is said to be the *spectral manifold* of T. If T has the SVEP, then the above definition is identical with  $\mathcal{H}_T(F) = \{x \in \mathcal{H} : \sigma_T(x) \subseteq F\}$ , where  $\sigma_T(x)$  is the local spectrum of T at x. (see [2], [3], [8], [9] for details)

Let  $H_{\circ}(T) = \{x \in \mathcal{H} : ||T^n x||^{\frac{1}{n}} \to 0\}$ . If  $H_{\circ}(T) = \mathcal{H}$ , then T is a quasinilpotent operator on  $\mathcal{H}([2, p.28. \text{ Lemma}])$ .

Now we are ready for the following result.

LEMMA 3. Weyl's theorem holds for every algebraically totally-paranormal operator.

*Proof.* Suppose p(T) is totally-paranormal for some nonconstant polynomial p. We first prove that  $\pi_{00}(T) \subseteq \sigma(T) \setminus \omega(T)$ . Without loss of generality, it suffices to show that

$$0 \in \pi_{00}(T) \Longrightarrow T$$
 is Weyl but not invertible.

Suppose  $0 \in \pi_{00}(T)$ . Since  $0 \in \text{iso}\sigma(T)$ , we can consider the Riesz spectral projection  $P_0$  with respect to 0 ([7, Theorem 49.1; Proposition 49.1]) such that

$$R(P_0) = H_0(T), (T)|_{N(P_0)}$$
 is invertible, and  $H = R(P_0) \oplus N(P_0)$ .

It is well known ([8, Proposition 1.8]) that if T has finite ascent, then it has the SVEP at 0. It is well known ([8, Corollary 2.4]) that if T has the SVEP at 0, then

$$\mathcal{H}_T(\{0\}) = H_{\circ}(T).$$

Thus we have

$$R(P_0) = H_{\circ}(T) = \mathcal{H}_T(\{0\}).$$

By hypothesis R(T) is closed and  $0 \in \pi_0(T)$ , and so T is semi-Fredholm. Then since  $\mathcal{H}_T(\{0\})$  is closed, we have by [9, Theorem 2]

$$R(P_0) = \mathcal{H}_T(\{0\})$$
 is finite dimensional.

Thus the restrictions of T to reducing subsets  $R(P_0)$  and  $N(P_0)$  are finite dimensional and invertible operators, respectively. So we can see that T is Weyl but not invertible. Hence we have that  $\pi_{00}(T) \subseteq \sigma(T) \setminus \omega(T)$ .

For the reverse inclusion, suppose  $0 \in \sigma(T) \setminus \omega(T)$ . Thus T is Weyl. Since T has a finite ascent, T has also a finite descent by [10, Theorem 1(4)]. So T is Weyl of finite ascent and descent, and then it is Browder. Therefore  $0 \in \pi_{00}(T)$ . This completes the proof.

Now we conclude with the proof of Theorem.

 $Proof\ of\ Theorem.$  Remembering [12, Lemma] that if T is isoloid, then

$$f(\sigma(T) \setminus \pi_{00}(T)) = \sigma(f(T)) \setminus \pi_{00}(f(T))$$
 for every  $f \in H(\sigma(T))$ ;

it follows from Lemma 1 (ii), Lemma 2 and Lemma 3 that

$$\sigma(f(T)) \setminus \pi_{00}(f(T)) = f(\sigma(T) \setminus \pi_{00}(T)) = f(\omega(T)) = \omega(f(T)),$$

which implies that Weyl's theorem holds for f(T).

### References

- L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
- I. Colojoara and C. Foias, Theory of generalized spectral operators, Gorden and Breach, New York, 1968.
- [3] N. Dunford and J. T. Schwartz, Linear operators, part III; spectral operators, Wiley, New York, 1971.
- [4] Y. M. Han and W. Y. Lee, Weyl's theorem holds for algebraically hyponormal operators, Proc. Amer. Math. Soc. 128 (2000), 2291-2296.
- [5] R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
- [6] R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), 2115-2124.
- [7] H. G. Heuser, Functional Analysis, John Wiley & Sons Ltd., 1982.
- [8] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 157 (1992), 323–336.
- [9] \_\_\_\_\_, Essential spectra through local spectral theory, Proc. Amer. Math. Soc. 125 (1997), 1425–1434.
- [10] D. Lay, Characterizations of the essential spectrum of F. E. Browder, Bull. Amer. Math. Soc. 74 (1968), 246–248.
- [11] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), no. 1, 61-64.
- [12] K. K. Oberai, On the Weyl spectrum (II), Illinois J. Math. 21 (1977), 84-90.

DEPARTMENT OF COMPUTER AIDED MATHEMATICAL INFORMATION SCIENCE, SEMYUNG UNIVERSITY, JECHON 390-711, KOREA

E-mail: jckim@semyung.ac.kr