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ABSTRACT. In this paper we show that Weyl’s theorem holds for
f(T) when an Hilbert space operator T is “algebraically totally-
paranormal” and f is any analytic function on an open neighbor-
hood of the spectrum of T'.

1. Introduction

Throughout this paper let L(H) denote the algebra of bounded linear
operators acting on an infinite dimensional Hilbert space H. If T €
L(H) write N(T) and R(T) for the null space and range of T; o(T)
for the spectrum of T'; mo(T') for the set of eigenvalues of T'; mp(T") for
the isolated points of o(T') which are eigenvalues of finite multiplicity.
Recall ([5], [7]) that an operator T € L(H) is called Fredholm if it has
closed range with finite dimensional null space and its range of finite
co-dimension. The index of a Fredholm operator T € L(H) is given by

ind (T") = dim N(T) — dim R(T)* ( = dim N(T) — dim N(T*)).

An operator T € L(H) is called Weyl if it is Fredholm of index zero. An
operator T € L(H) is called Browder if it is Fredholm “of finite ascent
and descent”: equivalently, if T is Fredholm and 7' — Al is invertible
for sufficiently small A # 0 in C. The essential spectrum o.(T), the
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Weyl spectrum w(7") and the Browder spectrum ¢,,(T") of T € L(H) are
defined by

oe(T) ={A € C: T — A is not Fredholm},
w(T)={Ae€C:T - Al is not Weyl},
op(T) = {A € C: T — A is not Browder},
0.(T) Cw(T) Cop(T) = 0.(T) Uacco(T),

where we write acc K for the accumulation points of K C C. Following
Coburn ([1]) we say that Weyl’s theorem holds for T € L(H) if there is
equality

o(T) \ w(T) = mo0(T).

An operator T € L(H) is called isoloid if every isolated point of ¢(T) is
an eigenvalue of T'. Recall ([8]) that an operator T' € £L(H) is said to be
totally-paranormal if

(T — Nz||? < ||(T — X)2z||||z|| for all z € H and ) € C.

We shall say that the operator T € L(H) is algebraically totally-para-
normal if there exists a nonconstant complex polynomial p such that
p(T) is totally-paranormal. Evidently,

{hyponormal operators} C {totally-paranormal operators}

and
{algebraically hyponormal operators}

C {algebraically totally-paranormal operators}.

From well-known facts (cf. [8]) of totally-paranormal operators we easily
see that

(a) If T € L(H) is algebraically totally-paranormal, then so is T'— AT
for each A € C.

(b) If T € L(H) is algebraically totally-paranormal and M C H is
invariant under T', then T'|M is algebraically totally-paranormal.

(c) Unitary equivalence preserves algebraical totally-paranormality.

In 4] Han and Lee showed that Weyl’s theorem holds for f(T') when
T is an algebraically hyponormal operator and f is an analytic function
on an open neighborhood of o(T).

In this paper we extend this result to algebraically totally-paranormal
operators: our proof however differs from the correspondence in [4], in
that we employ techniques from local spectral theory.

The following is our main result.
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THEOREM. IfT € L(H) is algebraically totally-paranormal, then for
every f € H(o(T)), Weyl’s theorem holds for f(T), where H(o(T))
denotes the set of analytic functions on an open neighborhood of o(T).

2. Proofs

The following two lemmas give important and essential facts for al-
gebraically totally-paranormal operators but its proofs are routine and
similar to that of Han and Lee ([4]). Thus we shall just state them
without proofs.

The following result is an extension of [4, Lemma 1] to algebraically
totally-paranormal operators.

LEMMA 1. Suppose T € L{H).

(i) If T is algebraically totally-paranormal and quasinilpotent, then
T is nilpotent.

(ii) If T' is algebraically totally-paranormal, then T is isoloid.

(i) If T is algebraically totally-paranormal, then T has finite ascent.

The following result is an extension of [4, Theorem 3] to algebraically
totally-paranormal operators.

LEMMA 2. If T € L(H) is algebraically totally-paranormal, then
W(F(T)) = f(W(T)) for every f € H(o(T)).

To state next lemma we need some notions from local spectral theory.
We say that T € L(H) has the single valued extension property (SVEP)
if there is implication, for arbitrary open sets U C C and holomorphic
functions f: U — H,

(T—zI)f(z) =0on U = f(z) =0on U.

If this holds for a neighborhood U of A € C we say that T" has the SVEP
at A.

We introduce two important subsets of H. If T € L(H) and F is a
closed set in C, we define

Hr(F) = {x € H : there exists an analytic H-valued function
f:C\ F — H such that (T — \)f(\) = z}.
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Then Hr(F) is said to be the spectral manifold of T. If T has the SVEP,
then the above definition is identical with Hy(F) = {z € H : or(z) C
F}, where or(z) is the local spectrum of T at z. (see [2], [3], [8], [9] for
details)

Let Hy(T) = {x € H: ||T"z||" — O0}. If Hy(T) = H, then T is a
quasinilpotent operator on H ([2, p.28. Lemmal).

Now we are ready for the following result.

LEMMA 3. Weyl’s theorem holds for every algebraically totally-para-
normal operator.

Proof. Suppose p(T) is totally-paranormal for some nonconstant poly-
nomial p. We first prove that mpo(T) C o(T) \ w(T'). Without loss of
generality, it suffices to show that

0 € mpo(T) = T is Weyl but not invertible.

Suppose 0 € 7w(T"). Since 0 € isoo(T), we can consider the Riesz
spectral projection Py with respect to 0 ([7, Theorem 49.1; Proposition
49.1]) such that

R(Py) = Ho(T), (T)|n(py) is invertible, and H = R(Fy) & N(F).

It is well known ([8, Proposition 1.8]) that if 7" has finite ascent, then
it has the SVEP at 0. It is well known ([8, Corollary 2.4]) that if T has
the SVEP at 0, then

Hr({0}) = Ho(T).

Thus we have
R(Py) = Ho(T) = Hr({0}).

By hypothesis R(T) is closed and 0 € m(T'), and so T is semi-Fredholm.
Then since Hr({0}) is closed, we have by [9, Theorem 2]

R(Py) = Hr({0}) is finite dimensional.

Thus the restrictions of T' to reducing subsets R(Fy) and N (FPp) are finite
dimensional and invertible operators, respectively. So we can see that T
is Weyl but not invertible. Hence we have that moo(T") C o(T) \ w(T).
For the reverse inclusion, suppose 0 € o(T) \ w(T"). Thus T is Weyl.
Since T has a finite ascent, T has also a finite descent by [10, Theorem
1(4)]. So T is Weyl of finite ascent and descent, and then it is Browder.
Therefore 0 € mpo(T"). This completes the proof. O
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Now we conclude with the proof of Theorem.

Proof of Theorem. Remembering [12, Lemma)] that if 7" is isoloid,
then

F(o(T)\ moo(T)) = o(f(T)) \ moo(f(T)) for every f € H(o(T));

it follows from Lemma 1 (ii), Lemma 2 and Lemma 3 that

o (f(T)) \ moo (£(T)) = £ (o(T) \ moo(T)) = f(w(T)) = w(f(T)),

which implies that Weyl’s theorem holds for f(T'). O
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