ON THE HYERS-ULAM STABILITY OF THE BANACH SPACE-VALUED DIFFERENTIAL EQUATION $y' = \lambda y$

SIN-EI TAKAHASI, TAKESHI MIURA, AND SHIZUO MIYAJIMA

Dedicated to Professor Jyunji Inoue on his retirement from Hokkaido University

ABSTRACT. Let I be an open interval and X a complex Banach space. Let $\varepsilon \geq 0$ and λ a non-zero complex number with $\operatorname{Re} \lambda \neq 0$. If φ is a strongly differentiable map from I to X with $\|\varphi'(t) - \lambda \varphi(t)\| \leq \varepsilon$ for all $t \in I$, then we show that the distance between φ and the set of all solutions to the differential equation $y' = \lambda y$ is at most $\varepsilon/|\operatorname{Re} \lambda|$.

1. Introduction

Let φ be a differentiable function from \mathbb{R} to \mathbb{R} , the real number field. Alsina and Ger [1] proved the following result: if a differentiable function $\varphi \colon \mathbb{R} \to \mathbb{R}$ satisfies $|\varphi'(t) - \varphi(t)| \leq \varepsilon$ for all $t \in \mathbb{R}$, then there exists a constant c such that $|\varphi(t) - ce^t| \leq 3\varepsilon$ for all $t \in \mathbb{R}$. That is, the distance between φ and the set of all solutions to the differential equation y' = y is at most 3ε .

Let $X \neq \{0\}$ be a complex Banach space, $\varepsilon \geq 0$ and λ a non-zero complex number. Let I be an open interval of \mathbb{R} . We say that Hyers-Ulam stability holds for the differential equation $y' = \lambda y$ on I, if there exists a constant $k \geq 0$ with the following property: for every strongly differentiable map $\varphi \colon I \to X$ with $\|\varphi'(t) - \lambda \varphi(t)\| \leq \varepsilon$ there corresponds an $x_{\varphi} \in X$ so that $\|\varphi(t) - e^{\lambda t}x_{\varphi}\| \leq k\varepsilon$. Note that the general solution to the (X-valued) differential equation $y' = \lambda y$ is of the form $e^{\lambda t}x$ for some $x \in X$. We say that the constant $k \geq 0$ with the property stated above is a Hyers-Ulam constant for the differential equation $y' = \lambda y$, or simply Hyers-Ulam constant.

Received July 23, 2001.

2000 Mathematics Subject Classification: Primary 34K20; Secondary 26D10. Key words and phrases: exponential functions, Hyers-Ulam stability.

In [2, 3] we considered some specific Banach spaces; the Banach space of all real-valued bounded continuous functions on a topological space; uniformly closed linear subspace of the Banach space of all complex-valued bounded continuous functions on a topological space. Then we proved the Hyers-Ulam stability for $y' = \lambda y$.

In this note we consider a strongly differentiable map from I to a general Banach space X. We study the Hyers-Ulam stability of the X-valued differential equation $y' = \lambda y$ on I. And the result is summarized as follows: if $\operatorname{Re} \lambda$, the real part of λ , is not zero then the Hyers-Ulam stability holds; if $\operatorname{Re} \lambda = 0$ then two cases occur: the Hyers-Ulam stability holds if the diameter $\delta(I)$ of I is finite and does not hold if $\delta(I)$ is infinite.

2. Main results

Let us define for $I \subset \mathbb{R}$ and $\lambda \in \mathbb{C}$

 $m(I,\lambda)=\inf\{e^{-\operatorname{Re}\lambda t}:t\in I\}$ and $M(I,\lambda)=\sup\{e^{-\operatorname{Re}\lambda t}:t\in I\}$. Clearly $0\leq m(I,\lambda)<\infty$ and $0< M(I,\lambda)\leq \infty$. Then we have the following result.

THEOREM 2.1. Let $\varepsilon > 0$ and $\varphi \colon I \to X$ a strongly differentiable function such that $\|\varphi'(t) - \lambda \varphi(t)\| \le \varepsilon$ for all $t \in I$. Then the following assertions are true:

(i) If Re $\lambda \neq 0$, then there exists an element $x_{\varphi} \in X$ such that

$$\|\varphi(t) - e^{\lambda t} x_{\varphi}\| \le |\operatorname{Re} \lambda|^{-1} \left(1 - \frac{m(I, \lambda)}{M(I, \lambda)}\right) \varepsilon$$

for all $t \in I$. In particular, if $m(I, \lambda) = 0$ then x_{φ} with the property $\sup_{t \in I} \|\varphi(t) - e^{\lambda t} x_{\varphi}\| < \infty$ is unique.

(ii) If Re $\lambda=0$ and the diameter $\delta(I)$ of I is finite, then there exists an $x_{\varphi}\in X$ such that

$$\|\varphi(t) - e^{\lambda t} x_{\varphi}\| \le \varepsilon \delta(I)$$

for all $t \in I$.

(iii) If Re $\lambda = 0$ and $\delta(I) = \infty$, then the Hyers-Ulam stability of the differential equation $y' = \lambda y$ does not hold.

Proof. Let X^* be the dual space of X. For each $f \in X^*$ we define the map $\varphi_f \colon I \to \mathbb{C}$ by

$$\varphi_f(t) = f(\varphi(t)), \quad (t \in I).$$

Fix $f \in X^*$ arbitrarily. Then we have $(\varphi_f)'(t) = f(\varphi'(t))$ for every $t \in I$. Also

$$|(\varphi_f)'(t) - \lambda \varphi_f(t)| = |f(\varphi'(t)) - f(\lambda \varphi(t))|$$

$$\leq ||f|| ||\varphi'(t) - \lambda \varphi(t)|| \leq \varepsilon ||f||$$

holds for every $t \in I$. Put $h(t) = e^{-\lambda t} \varphi_f(t)$ for each $t \in I$. Then we see that $h'(t) = \{(\varphi_f)'(t) - \lambda \varphi_f(t)\}e^{-\lambda t}$. Hence $|h'(t)| \leq \varepsilon ||f|| ||e^{-\lambda t}||$ for all $t \in I$. Let $s, t \in I$ with s < t. Then h' is integrable on [s, t]. Although h' need not be continuous, it is well-known that $h(s) - h(t) = \int_s^t h'(\tau) d\tau$ (cf. [4, Theorem 7.21]). Therefore we have

$$|h(s) - h(t)| = \left| \int_{s}^{t} h'(\tau) d\tau \right|$$

$$\leq \varepsilon ||f|| \int_{s}^{t} |e^{-\lambda \tau}| d\tau$$

$$= \varepsilon ||f|| \int_{s}^{t} e^{-\operatorname{Re} \lambda \tau} d\tau.$$

(i) Suppose Re $\lambda \neq 0$. By the inequality (1) we obtain

$$\left| f\left(e^{-\lambda t} \varphi(t) - e^{-\lambda s} \varphi(s) \right) \right| \le \frac{\varepsilon \|f\|}{|\operatorname{Re} \lambda|} \left| e^{-\operatorname{Re} \lambda t} - e^{-\operatorname{Re} \lambda s} \right|$$

for all $s, t \in I$. Since f is arbitrary, it follows that

$$||e^{-\lambda t}\varphi(t) - e^{-\lambda s}\varphi(s)|| \le \frac{\varepsilon}{|\operatorname{Re}\lambda|} |e^{-\operatorname{Re}\lambda t} - e^{-\operatorname{Re}\lambda s}|$$

for all $s,t\in I$. This implies that if $e^{-\operatorname{Re}\lambda s} \searrow m(I,\lambda)$, then $e^{-\lambda s}\varphi(s)$ converges to an element, say $x_{\varphi}\in X$. Then we have

$$\|\varphi(t) - e^{\lambda t} x_{\varphi}\| \leq e^{\operatorname{Re} \lambda t} \|e^{-\lambda t} \varphi(t) - e^{-\lambda s} \varphi(s)\|$$

$$+ e^{\operatorname{Re} \lambda t} \|e^{-\lambda s} \varphi(s) - x_{\varphi}\|$$

$$\leq \frac{\varepsilon}{|\operatorname{Re} \lambda|} \left| 1 - \frac{e^{-\operatorname{Re} \lambda s}}{e^{-\operatorname{Re} \lambda t}} \right| + e^{\operatorname{Re} \lambda t} \|e^{-\lambda s} \varphi(s) - x_{\varphi}\|.$$

Letting $e^{-\operatorname{Re}\lambda s} \searrow m(I,\lambda)$ we obtain

$$\|\varphi(t) - e^{\lambda t} x_{\varphi}\| \le \frac{\varepsilon}{|\operatorname{Re} \lambda|} \left(1 - \frac{m(I, \lambda)}{M(I, \lambda)}\right)$$

for all $t \in I$.

Now suppose that $x \in X$ is such that $\sup_{t \in I} \|\varphi(t) - e^{\lambda t} x\| = c < \infty$. If $m(I, \lambda) = 0$ then we have

$$||x - x_{\varphi}|| \leq |e^{-\lambda t}| \left\{ ||e^{\lambda t}x - \varphi(t)|| + ||\varphi(t) - e^{\lambda t}x_{\varphi}|| \right\}$$

$$\leq \left(c + \frac{\varepsilon}{|\operatorname{Re}\lambda|} \right) e^{-\operatorname{Re}\lambda t}$$

$$\to 0 \quad (\text{as } e^{-\operatorname{Re}\lambda t} \to 0).$$

Hence $x = x_{\varphi}$.

(ii) Suppose $\operatorname{Re} \lambda = 0$ and $\delta(I) < \infty$. Then by the inequality (1) we have

$$|f(e^{-\lambda t}\varphi(t) - e^{-\lambda s}\varphi(s))| \leq \varepsilon ||f|| \left| \int_{s}^{t} e^{-\operatorname{Re}\lambda \tau} d\tau \right|$$

$$= \varepsilon |t - s| ||f||$$

$$\leq \varepsilon \delta(I) ||f||$$

for all $s, t \in I$. Since f is arbitrary and since Re $\lambda = 0$, it follows that

$$\|\varphi(t) - e^{\lambda t}e^{-\lambda s}\varphi(s)\| \le \varepsilon\delta(I)$$

for all $s, t \in I$. Then $e^{-\lambda s}\varphi(s)$ is an element with the property stated above for every $s \in I$.

(iii) Suppose that $\operatorname{Re} \lambda = 0$ and $\delta(I) = \infty$. We can find an element $x_0 \in X$ with $||x_0|| = 1$. Put $\varphi_0(t) = \varepsilon t e^{\lambda t} x_0$ for each $t \in I$. Then $||\varphi_0'(t) - \lambda \varphi_0(t)|| = \varepsilon |e^{\lambda t}|||x_0|| = \varepsilon$ for all $t \in I$. Assume that there exist a constant $k \geq 0$ and an element $y_0 \in X$ such that $||\varphi_0(t) - e^{\lambda t} y_0|| \leq k\varepsilon$ for all $t \in I$. Then $||\varepsilon t x_0 - y_0|| = ||\varphi_0(t) - e^{\lambda t} y_0|| \leq k\varepsilon$. Hence $|t| \leq k + ||y_0||/\varepsilon$ for all $t \in I$. This contradicts $\delta(I) = \infty$.

REMARK 2.1. Suppose that $\operatorname{Re} \lambda \neq 0$ and $m(I,\lambda) = 0$. Then the constant $|\operatorname{Re} \lambda|^{-1} \{1 - m(I,\lambda)/M(I,\lambda)\} = |\operatorname{Re} \lambda|^{-1}$ in (i) of Theorem 2.1 is best possible. To see this, let $x_0 \in X$ with $||x_0|| = 1$. We define $\varphi(t) = \varepsilon (\operatorname{Re} \lambda)^{-1} e^{i \operatorname{Im} \lambda t} x_0$ for each $t \in I$. Then

$$\|\varphi'(t) - \lambda \varphi(t)\| = \varepsilon \left| \frac{i \operatorname{Im} \lambda - \lambda}{\operatorname{Re} \lambda} \right| = \varepsilon, \quad (t \in I).$$

By Theorem 2.1, we can find a unique $x_{\varphi} \in X$ such that $\|\varphi(t) - e^{\lambda t} x_{\varphi}\| \le |\operatorname{Re} \lambda|^{-1} \varepsilon$ for all $t \in I$. Then we have

$$||x_{\varphi}|| \le |e^{-\lambda t}| \left(\frac{1}{|\operatorname{Re}\lambda|}\varepsilon + ||\varphi(t)||\right) = e^{-\operatorname{Re}\lambda t} \frac{2\varepsilon}{|\operatorname{Re}\lambda|}$$

for all $t \in I$. This implies $x_{\varphi} = 0$. Since x_{φ} is unique, it follows that $|\text{Re }\lambda|^{-1}$ is no greater than any Hyers-Ulam stability constant.

REMARK 2.2. Suppose that Re $\lambda \neq 0$ and $m(I,\lambda) > 0$. Then the uniqueness of $x_{\varphi} \in X$ with the property $\sup_{t \in I} \|\varphi(t) - e^{\lambda t} x_{\varphi}\| < \infty$ need not be true. Indeed, let $x_0 \in X$. Put $\varphi(t) = e^{\lambda t} x_0$ for each $t \in I$. For every $x \in X$ with

$$||x_0 - x|| \le \frac{m(I, \lambda)\varepsilon}{|\operatorname{Re} \lambda|} \left(1 - \frac{m(I, \lambda)}{M(I, \lambda)}\right),$$

we have the following inequality.

$$\|\varphi(t) - e^{\lambda t}x\| = e^{\operatorname{Re}\lambda t} \|x_0 - x\| \le \frac{\varepsilon}{|\operatorname{Re}\lambda|} \left(1 - \frac{m(I,\lambda)}{M(I,\lambda)}\right).$$

REMARK 2.3. By using the Bochner integral, we can give another simple proof of Theorem 2.1 with an explicit formula for x_{φ} . Put $\psi(t) = \varphi'(t) - \lambda \varphi(t)$ for each $t \in I$. Then $\psi(t)$ is locally Bochner integrable. In fact, firstly it is separably valued since so is $\varphi'(t)$ as a derivative of a continuous function, secondly it is weakly measurable, and lastly it is assumed to be bounded (see [5, pp. 130–133]). Fix $a \in I$. Then we obtain the following equality for every $t \in I$, where the integral should be interpreted as a Bochner integral:

$$e^{-\lambda t}\varphi(t) - e^{-\lambda a}\varphi(a) = \int_a^t e^{-\lambda s}\psi(s)ds.$$

This equality can be justified by reducing it to the following scalar equality by considering the composition with an arbitrary $f \in X^*$:

$$e^{-\lambda t}f(\varphi(t)) - e^{-\lambda a}f(\varphi(a)) = \int_a^t e^{-\lambda s}f(\psi(s))ds.$$

(This scalar equality is nothing but the one already verified in the proof of Theorem 2.1.) If Re $\lambda>0$ then

$$\int_{a}^{\sup I} e^{-\lambda s} \psi(s) ds = \lim_{t \nearrow \sup I} \int_{a}^{t} e^{-\lambda s} \psi(s) ds$$

exists since $||e^{-\lambda s}\psi(s)|| \le \varepsilon e^{-\operatorname{Re}\lambda s}$. By a simple calculation we have

$$\begin{split} & \left\| \varphi(t) - e^{\lambda t} \left\{ e^{-\lambda a} \varphi(a) + \int_{a}^{\sup I} e^{-\lambda s} \psi(s) ds \right\} \right\| \\ &= \left\| e^{\lambda t} \int_{t}^{\sup I} e^{-\lambda s} \psi(s) ds \right\| \\ &\leq e^{\operatorname{Re} \lambda t} \int_{t}^{\sup I} e^{-\operatorname{Re} \lambda s} \| \psi(s) \| ds \\ &\leq e^{\operatorname{Re} \lambda t} \frac{\varepsilon}{\operatorname{Re} \lambda} (e^{-\operatorname{Re} \lambda t} - e^{-\operatorname{Re} \lambda \sup I}) \\ &\leq \frac{\varepsilon}{\operatorname{Re} \lambda} \left(1 - \frac{m(I, \lambda)}{M(I, \lambda)} \right) \end{split}$$

for every $t \in I$, thereby we obtain Theorem 2.1 with an explicit formula for x_{φ} . If Re $\lambda < 0$, then we can prove the Hyers-Ulam stability in a way similar to the above. If Re $\lambda = 0$ then we have

$$\begin{split} & \left\| \varphi(t) - e^{\lambda t} \left\{ e^{-\lambda a} \varphi(a) + \int_a^u e^{-\lambda s} \psi(s) ds \right\} \right\| \\ &= \left\| e^{\lambda t} \int_t^u e^{-\lambda s} \psi(s) ds \right\| \\ &\leq \varepsilon |t - u| \\ &\leq \varepsilon \delta(I) \end{split}$$

for every $t, u \in I$.

ACKNOWLEDGEMENT. The authors thank the referee for helpful comments and improving the paper. This research is partly supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

References

- [1] C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998), 373–380.
- [2] T. Miura, S.-E. Takahasi, and H. Choda, On the Hyers-Ulam stability of real continuous function valued differentiable map, Tokyo J. Math., 24 (2001), 467– 476.
- [3] T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Japon., 55 (2002), 17-24.
- [4] W. Rudin, Real and Complex Analysis (Third Edition), McGraw-Hill.
- [5] K. Yosida, Functional Analysis (Sixth Edition), Springer Verlag, 1980.

Sin-Ei Takahasi, Department of Basic technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan E-mail: sin-ei@emperor.yz.yamagata-u.ac.jp

Takeshi Miura, Department of Basic technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan E-mail: miura@yz.yamagata-u.ac.jp

SHIZUO MIYAJIMA, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SCIENCE UNIVERSITY OF TOKYO, SHINJUKU-KU WAKAMIYA 26 TOKYO 162-8601, JAPAN E-mail: miyajima@rs.kagu.sut.ac.jp