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ABSTRACT. Let I be an open interval and X a complex Banach
space. Let ¢ > 0 and A a non-zero complex number with Re A # 0.
If ¢ is a strongly differentiable map from I to X with ||¢'(t) —
Ap(t)|| < e for all t € I, then we show that the distance between ¢
and the set of all solutions to the differential equation 3 = Ay is at
most £/|Re A|.

1. Introduction

Let ¢ be a differentiable function from R to R, the real number field.
Alsina and Ger [1] proved the following result: if a differentiable function
¢: R — R satisfies [¢/(t) — ¢(t)] < € for all ¢t € R, then there exists a
constant ¢ such that |¢(t) — cet| < 3¢ for all t € R. That is, the distance
between ¢ and the set of all solutions to the differential equation i/ = y
is at most 3e.

Let X # {0} be a complex Banach space, € > 0 and A a non-zero
complex number. Let I be an open interval of R. We say that Hyers-
Ulam stability holds for the differential equation 3’ = Ay on I, if there
exists a constant k > 0 with the following property: for every strongly
differentiable map ¢: I — X with ||¢/(2) — Ap(t)]| < € there corresponds
an z, € X so that |lo(t) — eMz,|| < ke. Note that the general solution
to the (X-valued) differential equation 3 = My is of the form ez for
some ¢ € X. We say that the constant k£ > 0 with the property stated
above is a Hyers-Ulam constant for the differential equation 3’ = Ay, or
simply Hyers-Ulam constant.
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In [2, 3] we considered some specific Banach spaces; the Banach space
of all real-valued bounded continuous functions on a topological space;
uniformly closed linear subspace of the Banach space of all complex-
valued bounded continuous functions on a topological space. Then we
proved the Hyers-Ulam stability for ¢’ = \y.

In this note we consider a strongly differentiable map from I to a
general Banach space X. We study the Hyers-Ulam stability of the X-
valued differential equation 3y’ = Ay on I. And the result is summarized
as follows: if Re A, the real part of A, is not zero then the Hyers-Ulam
stability holds; if Re A = 0 then two cases occur: the Hyers-Ulam sta-
bility holds if the diameter §(I) of [ is finite and does not hold if §(I) is
infinite.

2. Main results

Let us define for I CRand A € C

m(I,\) = inf{e"ReX : t € I'} and M(I,\) = sup{e R .t c I}.
Clearly 0 < m(I,\) < oo and 0 < M(I,\) < co. Then we have the
following result.

THEOREM 2.1. Let € > 0 and ¢: I — X a strongly differentiable
function such that ||¢'(t) — Ap(t)|| < € for all t € I. Then the following
assertions are true:

(i) If Re A # 0, then there exists an element z, € X such that
oAt < -1 _ m(I’ )\)
o) = e, < IRe™ (1= F2255 ) e
for allt € I. In particular, if m(I,\) = 0 then x, with the property

supyer [|p(t) — eMzy,|| < oo is unique.
(ii) If Re A = 0 and the diameter §(I) of I is finite, then there exists
an z, € X such that

() — ¥zl < ed(1)

forallt el
(iii) If ReA = 0 and §(I) = oo, then the Hyers-Ulam stability of the
differential equation y' = \y does not hold.

Proof. Let X* be the dual space of X. For each f € X* we define
the map ¢y: I — C by

wrt) = fle), (tel).
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Fix f € X* arbitrarily. Then we have () (t) = f(¢/(t)) for every ¢t € I.
Also

() (1) = 2] = 1)) = F(Ap(t))]
< NFIHE' @ = Aol < el £l

holds for every t E I Put h(t) = e My (t) for each t € I. Then we see

that A/(t) = {(pf) (t) — Aps(t)}e . Hence |I/(t)| < ¢||fllle~*¥] for all
tel Let s, tel w1th s < t. Then ' is integrable on [s t]. Although
h' need not be continuous, it is well-known that h(s f b (r

(cf. [4, Theorem 7.21]). Therefore we have

/: B (T)dr

t

(1) < elfl / e |dr
S
t

B / g~ReT g

(i) Suppose Re A # 0. By the inequality (1) we obtain

‘f (e_’\t<p(t) - e_’\sgo(s))‘ IsR“g\ll e~ReAt _ g—Res

h(s) —h(t)] =

for all s,t € I. Since f is arbitrary, it follows that

||e_)‘t<,0(t) _ e—)\s | —Re At

e—Re )\sl

Pl < oy

for all s,t € I. This implies that if e"ReAs N\, m(I, )), then e *y(s)
converges to an element, say x, € X. Then we have

lo(t) — Xzl < e Me™Np(t) — e M p(s)]|
+ et N e p(s) — 2|

—Re s

—Re At

€ e
< _
~  |Re) ! e

+ef N e p(s) — zyl.

Letting e ReAs N\ m(I, \) we obtain

Ioto~oll < oy (- T ay)

foralit e .
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Now suppose that z € X is such that sup,¢; ||l¢(t) — eMz|| = ¢ < .
If m(I,A) = 0 then we have

le—zoll < le {lle¥s — ol + g (t) — Ml }

€ —Re Xt
<
= (” lReAI) ¢

— 0 (ase BN ().

Hence z = x,,.
(ii) Suppose Re A = 0 and 6(I) < oo. Then by the inequality (1) we

have
Fle™(t) - e ()] < ellf] / RN gy

= ¢t —s||If]
es(DIFI
for all s,t € I. Since f is arbitrary and since Re A = 0, it follows that

lp(t) — eXe™*p(s)|| < ed(1)
for all s,t € I. Then e **¢(s) is an element with the property stated
above for every s € I.

(iii) Suppose that Re A = 0 and §(I) = co. We can find an element
zo € X with ||zo|| = 1. Put @o(t) = eteMazg for each t € I. Then
llo’ (t) — Apo(t)|| = e |e|||zg|| = € for all ¢ € I. Assume that there exist
a constant k > 0 and an element yo € X such that | (t) — eMyo|| < ke
for all t € I. Then ||etzg — yol = |lpo(t) — e*yol| < ke. Hence [t| <
k + |lyol| /¢ for all ¢ € I. This contradicts §(I) = oo. O

REMARK 2.1. Suppose that Re A # 0 and m(I,A) = 0. Then the
constant |Re \|"1{1 — m(I,\)/M(I,\)} = |Re\|™! in (i) of Theorem
2.1 is best possible. To see this, let xp € X with ||zg|| = 1. We define
@(t) = e (Re A)~Letm Mz for each t € I. Then

, ImA— A
— Dl =222 &
le"(®) = Al = | —x

By Theorem 2.1, we can find a unique z,, € X such that ||p(t)—e Mz, | <
[Re A| !¢ for all t € I. Then we have

IA

\:s, (t eI).

1 2¢e
< -t t — —Re At
ool < 17 (agye + IOl ) =N

for all ¢ € I. This implies z, = 0. Since z, is unique, it follows that
|Re \|~! is no greater than any Hyers-Ulam stability constant.
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REMARK 2.2. Suppose that Re X # 0 and m(I,\) > 0. Then the
uniqueness of z, € X with the property supy; [|¢(t) — eMzy| < oo
need not be true. Indeed, let 29 € X. Put ¢(t) = e*xg for each t € I.
For every z € X with

m(I, Ne m(I, )
oo - ol < ZHEE (1- Y.

we have the following inequality.

At Re Mt €
— = — < 1-—

REMARK 2.3. By using the Bochner integral, we can give another
simple proof of Theorem 2.1 with an explicit formula for z,. Put 9(t) =
&' (t) — Ap(t) for each t € I. Then 9(t) is locally Bochner integrable.
In fact, firstly it is separably valued since so is ¢/(t) as a derivative of
a continuous function, secondly it is weakly measurable, and lastly it
is assumed to be bounded (see [5, pp. 130-133]). Fix a € I. Then we
obtain the following equality for every ¢ € I, where the integral should
be interpreted as a Bochner integral:

Nplt) — e V(o) = [ (s

This equality can be justified by reducing it to the following scalar equal-
ity by considering the composition with an arbitrary f € X™*:

e F(plt) - S (pla)) = [ Fls))ds.

a

(This scalar equality is nothing but the one already verified in the proof
of Theorem 2.1.) If Re A > 0 then

sup { N t \
e MY(s)ds = lim e "*Y(s)ds
[ e s = tm [ e
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exists since |le=**1(s)|| < ee”Re*s, By a simple calculation we have
o) - {eepta) + |
a
sup
= “ekt/ e_’\sw(s)dsH
¢

sup [
< eRe)\t/ e—Re)\s“w(s)”ds
t

3 — —
< eRe)\t (6 Re)\t_e Re/\supI)

sup I

e"’\sv,[;(s)ds} H

Re )
€ m(I, )
= Re/\(l - M(I,,\))

for every t € I, thereby we obtain Theorem 2.1 with an explicit formula
for z,. If ReA < 0, then we can prove the Hyers-Ulam stability in a
way similar to the above. If Re A = 0 then we have

)~ {e 0@ + / " Mey(s)ds}|
= He’\t /tu e‘Asz/J(s)dsH

< elt —ul
< e6(I)
for every t,u € 1.
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