• Title/Summary/Keyword: zodiacal light

Search Result 40, Processing Time 0.026 seconds

MODELING OF THE ZODIACAL LIGHT FOR THE AKARI MID-IR ALL-SKY DIFFUSE MAPS

  • Kondo, Toru;Ishihara, Daisuke;Kaneda, Hidehiro;Oyabu, Shinki;Amatsutsu, Tomoya;Nakamichi, Keichiro;Sano, Hidetoshi;Ootsubo, Takafumi;Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.59-61
    • /
    • 2017
  • The AKARI 9 and 18 µm diffuse maps reveal the all-sky distribution of the interstellar medium with relatively high spatial resolution of ~6". The zodiacal light is a dominant foreground component in the mid-infrared. Thus, removal of the zodiacal light is a critical issue to study low surface brightness Galactic diffuse emission. We carried out modeling of the zodiacal light based on the Kelsall model which is constructed from the COBE data. In the previous study, only a time-varying component of the zodiacal light brightness was used for determination of the model parameters. However, there remains a residual component of the zodiacal light around the ecliptic plane even after removal with the model. Therefore, instead of using a time-varying component, we use the absolute brightness of the zodiacal light and we find that the new model can better remove the residual component. As a result, the best-fit model parameters are changed from those in the previous study. We discuss the properties of the zodiacal light based on our new result.

SMALL-SCALE STRUCTURE OF THE ZODIACAL DUST CLOUD OBSERVED IN FAR-INFRARED WITH AKARI

  • Ootsubo, Takafumi;Doi, Yasuo;Takita, Satoshi;Matsuura, Shuji;Kawada, Mitsunobu;Nakagawa, Takao;Arimatsu, Ko;Tanaka, Masahiro;Kondo, Toru;Ishihara, Daisuke;Usui, Fumihiko;Hattori, Makoto
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.63-65
    • /
    • 2017
  • The zodiacal light emission is the thermal emission from the interplanetary dust and the dominant diffuse radiation in the mid- to far-infrared wavelength region. Even in the far-infrared, the contribution of the zodiacal emission is not negligible at the region near the ecliptic plane. The AKARI far-infrared all-sky survey covered 97% of the whole sky in four photometric bands with band central wavelengths of 65, 90, 140, and $160{\mu}m$. AKARI detected the small-scale structure of the zodiacal dust cloud, such as the asteroidal dust bands and the circumsolar ring, in far-infrared wavelength region. Although the most part of the zodiacal light structure in the AKARI far-infrared all-sky image can be well reproduced with the DIRBE zodiacal light model, there are discrepancies in the small-scale structures. In particular, the intensity and the ecliptic latitude of the peak position of the asteroidal dust bands cannot be reproduced precisely with the DIRBE models. The AKARI observational data during more than one year has advantages over the 10-month DIRBE data in modeling the full-sky zodiacal dust cloud. The resulting small-scale zodiacal light structure template has been used to subtract the zodiacal light from the AKARI all-sky maps.

The optical spectra of zodiacal light

  • Yang, Hongu;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.60.1-60.1
    • /
    • 2013
  • Numerous dust particles are scattered in the interplanetary space of the solar system (Interplanetary Dust Particles; IDPs). The origin of the IDPs is one of the major questions in the solar system astronomy because IDPs are being removed from the solar system within a few million years by photon drag. Comets and asteroids were pointed out as the possible sources of IDPs. Although several dust supplying mechanisms from comets and asteroids have been revealed, amount of contribution from each sources are still not clear. Zodiacal light is sunlight scattered by IDPs. Spectra of zodiacal light can supply important observational clue to reveal the origin of the IDPs, because comets and each type of asteroids have different kind of spectra. However, reflectance spectrum of zodiacal light was not measured at the wavelength of weak atmospheric contamination. We measured the reflectance spectra of zodiacal light from $5000{\AA}$ to $7000{\AA}$. We used open data obtained by the Subaru/FOCAS instruments archived in the SMOKA database. From the longslit spectrum data, we measured spectrum of sky background and estimated flux from the sources other than the zodiacal light. We compared it with the spectra of each type of minor bodies in the solar system, and meteorites originated from these bodies.

  • PDF

DEBRIS DISKS AND THE ZODIACAL LIGHT EXPLORED BY THE AKARI MID-INFRARED ALL-SKY SURVEY

  • Ishihara, Daisuke;Takeuchi, Nami;Kondo, Toru;Kobayashi, Hiroshi;Kaneda, Hidehiro;Inutsuka, Shu-ichiro;Oyabu, Shinki;Nagayama, Takahiro;Fujiwara, Hideaki;Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.67-71
    • /
    • 2017
  • Debris disks are circumstellar dust disks around main-sequence stars. They are important observational clues to understanding the planetary system formation. The zodiacal light is the thermal emission from the dust disk in our Solar system. For a comprehensive understanding of the nature and the evolution of dust disks around main-sequence stars, we try a comparative study of debris disks and the zodiacal light. We search for debris disks using the AKARI mid-infrared all-sky point source catalog. By applying accurate flux estimate of the photospheric emission based on the follow-up near-infrared observations with IRSF, we have improved the detection rate of debris disks. For a detailed study of the structure and grain properties in the zodiacal dust cloud, as an example of dust disks around main-sequence stars, we analyze the AKARI mid-infrared all-sky diffuse maps. As a result of the debris disks search, we found old (>1 Gyr) debris disks which have large excess emission compared to their age, which cannot be explained simply by the conventional steady-state evolution model. From the zodiacal light analysis, we find the possibility that the dust grains trapped in the Earth's resonance orbits have increased by a factor of ~3 in the past ~20 years. Combining these results, we discuss the non-steady processes in debris disks and the zodiacal light.

High-Resolution Map of Zodiacal Dust Bands by WIZARD

  • Yang, Hongu;Ishiguro, Masateru;Usui, Fumihiko;Ueno, Munetaka
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.101.1-101.1
    • /
    • 2012
  • Interplanetary dust particles are observable as zodiacal light, which is the sunlight scattered by the interplanetary dust particles. The origins of interplanetary dust particles are still in question because they are eroded by Poynting-Robertson photon drag and mutual collisions among dust particles. The small-scale structures in the zodiacal light provided a clue to specify their origins. Asteroidal debris were detected as band-like structures (dust bands), and the cometary large particles were detected as narrow trails (dust trails). However, little is confirmative about their detailed origins and mineralogical compositions because of the lack of observational data particularly in the optical wavelength. We made a high-resolution optical zodiacal light map based on the CCD observations at Mauna Kea, Hawaii. We analyzed data taken on November 12, 2004. After the data reduction, such as flat fielding and subtraction of airglow emissions, we succeeded in the construction of the zodiacal light map with the spatial resolution of 3' in the solar elongation between 45 degree and 180 degree. This is the highest resolution map in the visible wavelength so far. In this map, we confirmed the dust bands structures near the ecliptic plane. We will discuss about the similarities and the differences between optical and infrared dust bands.

  • PDF

Fractional contribution of solar system minor bodies to the IDPs complex

  • Yang, Hongu;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2015
  • It is obvious that there are plentiful of dust particles in the interplanetary spaces of the Solar System (IDPs), based on micrometeor craters, zodiacal light and direct measurements on the spacecraft. Because of photon drag and planetary perturbations, these particles are continuously falling to the Sun or planets, therefore continuous source of the IDPs are required. We studied the fractional contribution of each type of solar system objects to the IDPs complex through the optical properties of the potential dust sources and the zodiacal light. We found that more than 90% of the IDPs are originated from cometary nuclei. This result is discussed through the comparison with the dynamic simulation, micrometeors mineralogy and near-infrared spectrum of the zodiacal light. In addition, we introduce our new project on the numerical simulation for the dust particles ejected from the cometary nuclei, to verify the conclusion of dominant cometary contribution and its detailed consequences.

  • PDF

TEMPORAL AND SPATIAL VARIATIONS OF THE ATMOSPHERIC DIFFUSE LIGHT

  • Kwon, Suk-Min
    • Journal of The Korean Astronomical Society
    • /
    • v.22 no.2
    • /
    • pp.141-160
    • /
    • 1989
  • In order to derive time dependence of the atmospheric diffuse light, which consists of the airglow continuum emission and diffusely scattered radiations of the intergrated starlight, the diffuse Galactic light, and the zodiacal light, we have analyzed the meridian scan observations of the sky brightness at $5,080\;{\AA}$ and $5,300\;{\AA}$. Amplitude of the time-variation becomes larger for lower elevation, and maximum amplitude is found to be about $50\;S_{10}(V)_{G2V}$ at elevation $10^{\circ}$. The atmospheric diffuse radiation attains maximum brightness at around midnight, and afterward it decreases slowly with time. The time-variations for the two wavelengths are similar to each other. The observed brightness distribution of the diffuse light along the zenith distance is fitted to an empirical relation of two parameters. By making the two parameters time-dependent, we describe the spatial and time variations of the atmospheric diffuse light. This enables us to make time dependent correction for the atmospheric diffuse component in the reduction of zodiacal light brightness.

  • PDF

DEVELOPMENT OF WIDE-FIELD IMAGING CAMERA FOR ZODIACAL LIGHT OBSERVATION

  • KWON S. M.;HONG S. S.;SHIN K. J.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.179-184
    • /
    • 2004
  • We have developed a wide-field imaging camera system, called WICZO, to monitor light of the night sky over extended period. Such monitoring is necessary for studying the morphology of interplanetary dust cloud and also the time and spatial variations of airglow emission. The system consists of an electric cooler a CCD camera with $60\%$ quantum efficiency at 500nm, and a fish-eye lens with $180^{\circ}$ field of view. Wide field imaging is highly desired in light of the night sky observations in general, because the zodiacal light and the airglow emission extend over the entire sky. This paper illustrates the design of WICZO, reports the result of its laboratory performance test, and presents the first night sky image, which was taken, under collaboration with Byulmaro Observatory, on top of Mt. Bongrae at Yongweol in January, 2004.

Solar System Sciences with SPHEREx (SPHEREx를 활용한 태양계 연구)

  • Pyo, Jeonghyun;Jeong, Woong-Seob
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2018
  • SPHEREx is expected to provide us with the opportunity of unbiased sampling of small Solar System objects along with near-infrared ($0.75-5.0{\mu}m$) spectroscopic (R ~ 41) information. The estimated numbers of detections are tens of thousands for asteroids, thousands for Trojans, hundreds for comets, and several for Kuiper Belt Objects, Centaurs and Scattered Disk Objects. Wide spectral range covering many bands from carbon-bearing molecules and ices will enable us to systematically survey the volatile materials throughout the Solar System. SPHEREx will, for the first time, produce the near-infrared spectral map of the zodiacal light to pin-down the relative contributions of various populations of Solar System objects and interstellar dust to the dust grains in the interplanetary space. The study of the zodiacal light is also important to remove the foreground for the EBL (extragalactic background light) study, one of the main topics of the mission.

  • PDF