• Title/Summary/Keyword: zinc-coating

Search Result 259, Processing Time 0.027 seconds

Effects of Silicon on Galvanizing Coating Characteristics in Dual Phase High Strength Steel (복합조직형 고강도 용융아연 도금강판의 도금특성에 미치는 강중 Si의 영향)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Shin, Kwang-Soo;Lee, Joon-Ho;Sohn, Ho-Sang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.423-432
    • /
    • 2009
  • In the galvanizing coating process, the effects of the silicon content on the coatability and wettability of molten zinc were investigated on Dual-Phase High Strength Steels (DP-HSS) with various Si contents using the galvanizing simulator and dynamic reactive wetting systems. DP-HSS showed good coatability and a well-developed inhibition layer in the range of Si content below 0.5 wt%. Good coatability was the results of the mixed oxide $Mn_{2}SiO_{4}$, being formed by the selective oxidation on the surface, with a low contact angle in molten zinc and a large fraction of oxide free surface that provided a sufficient site for the molten zinc to wet and react with the substrate. On the other hand, with more than 0.5 wt%, DP-HSS exhibited poor coatability and an irregularly developed inhibition layer. The poor coatability was due to the poor wettability that resulted from the development of network-type layers of amorphous ${SiO}_{2}$, leading to a high contact angle in molten zinc, on the surface.

Study on the Coating Condition of ZnS Passivation Layer for the Enhanced Photovoltaic Properties of Quantum Dot Photoelectrodes (양자점 광전극의 광전특성 향상을 위한 ZnS 패시베이션 층 코팅 조건에 관한 연구)

  • JUNG, SUNG-MOK;KIM, JAE-YUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.113-120
    • /
    • 2022
  • Quantum dots (QDs) are attractive photosensitizer candidates for application not only in solar cells but also in solar hydrogen generation. For the prepartion of highly efficient QD-sensitized photoelectrodes, it is important to reduce electron recombination at the photoanode/electrolyte interface. Here, we study on the coating condition of ZnS passivation layers on the photoanodes in QD-sensitized solar cells (QDSCs). The ZnS passivation layers are coated by successive ionic layer adsorption and reaction method, and as the cation precursor, zinc acetate and zinc nitrate are empolyed. Due to the higher pH of cation precursor solution, the ZnS loading is improved when the zinc acetate is used, compared to the zinc nitrate. This improved loading of ZnS leads to the reduced electron recombination at the surface of photoanodes and the enhaced conversion efficiency of QDSCs from 6.07% to 7.45%.

Diagnosis of Coating Deviation in Continuous Galvanizing Line (연속용융아연 도금라인의 도금편차 진단)

  • 배용환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.192-199
    • /
    • 2002
  • In continuous galvanizing process, the mass of zinc deposited and its distribution are controlled by the air pressure, effective distance from the air knife nozzle to the steel strip surface and line speed. Coating defects are resulted from the unbalance of these control factors and the inaccuracy of coating equipments. This paper investigates the main cause of coating deviation and a new air knife system for control of coating thickness was developed. We investigate dynamic pressure variation by air knife types. It is found that the coating deviation is caused by the unbalance of dynamic pressure, the irregularity of strip position, and the strip vibration. Formulating a useful coating model by using present working condition, an optimal working condition is suggested. The productivity and coating quality are improved by applying the result of this research at the shop floor.

Coating deviation control in traverse direction in a continuous galvanizing line

  • Yoo, Seung-Ryeol;Choi, Il-Seop;Kim, Sang-Jun;Park, Han-Ku;Kwak, Young-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.323-327
    • /
    • 1995
  • A new air knife system for coating thickness control in hot dip galvanizing process had been developed and installed on the CGL in Pohang Steel Works, POSCO. This new system consists of air knives with remotely adjustable nozzle slot and an automatic control system which can control both longitudinal and traverse coating deviations. Based on the optimal control algorithm, a traverse coating deviation control was designed. The controller controls the lip profile of the air knives with flexible structure according to the deviation of coating weight. From the measured values which are dependent on the strip width, the lip gaps are calculated with optimal algorithm and the model of the coating deviation. Time delay between knives and a coating thickness gauge is solved by the Smith Predictor.

  • PDF

Application of CBD Zinc Sulfide (ZnS) Film to Low Cost Antireflection Coating on Large Area Industrial Silicon Solar Cell

  • U. Gangopadhyay;Kim, Kyung-Hea;S.K. Dhungel;D. Mangalaraj;Park, J.H.;J. Yi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Zinc sulfide is a semiconductor with wide band gap and high refractive index and hence promising material to be used as ARC on commercial silicon solar cells. Uniform deposition of zinc sulfide (ZnS) by using chemical bath deposition (CBD) method over a large area of silicon surface is an emerging field of research because ZnS film can be used as a low cost antireflection coating (ARC). The main problem of the CBD bath process is the huge amount of precipitation that occurs during heterogeneous reaction leading to hamper the rate of deposition as well as uniformity and chemical stoichiometry of deposited film. Molar concentration of thiorea plays an important role in varying the percentage of reflectance and refractive index of as-deposited CBD ZnS film. Desirable rate of film deposition (19.6 ${\AA}$ / min), film uniformity (Std. dev. < 1.8), high value of refractive index (2.35), low reflectance (0.655) have been achieved with proper optimization of ZnS bath. Decrease in refractive index of CBD ZnS film due to high temperature treatment in air ambiance has been pointed out in this paper. Solar cells of conversion efficiency 13.8 % have been successfully achieved with a large area (103 mm ${\times}$ 103 mm) mono-crystalline silicon wafers by using CBD ZnS antireflection coating in this modified approach.

Effects of Zinc Toxicity on Larval Development and Seed Collection of Abalone, haliotis discus hannai (참전복, Haliotis discus hannai 유생발생 및 채묘에 미치는 아연독성)

  • 서대철;최상덕;라성주;양한춘;서해립
    • Journal of Aquaculture
    • /
    • v.12 no.3
    • /
    • pp.229-236
    • /
    • 1999
  • in the present study, the zinc toxicity to larval development and seed attachment of the abalone, Haliotis discus hannai was obtained under continuous flow through system. The zinc concentration melted from zinc coating pipe for 7 months ranged from $89.00\pm2.55 \mu\textrm{g}/\ell to 15.23\pm2.58\mu\textrm{g}/\ell(Y=0.85M^2-19.71+109.96)$. Treatments were carried out with zinc concentration $0~160 \mu\textrm{g}/\ell$. The maximum and minimum of fertilization rate were $87.7\pm5.3%$ in control, $83.7\pm7.6%$ in zinc concentration $160\mu\textrm{g}/\ell$, respectively. The maximum and minimum of hatching rate were $87.5\pm4.5%$ in zinc concentration $10\mu\textrm{g}/\ell$, $79.3\pm5.6%$ in zinc concentration $160\mu\textrm{g}/\ell$, respectively. Both of the results were not significantly different (P>0.05). But the normality rate, setting rate and survival rate of abalone larvae at over zinc concentration TEX>$20\mu\textrm{g}/\ell$ decreased rapidly and showed significantly different from those of the other group(P<0.05).

  • PDF

Enlargement of Anti-corrosion of Zinc Plating by the Trivalent Chromium Sulfate Conversion Coating (3가 크롬황산염의 크로메이트에 의한 아연도금내식성 증대)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.296-302
    • /
    • 2007
  • A trivalent chromate conversion coating solution which is composed with $KCr_2(SO_4)$ as main component was investigated to test a feasibility of use as an alternative six-valent chromate conversion coating for improvement of anti-corrosion of zinc plating. The proposed trivalent convesion coating was consisted of $KCr(SO_4)$ 35~45 g/L as trivalent chromium source, $NaH_2PO_4$ 20~30 g/L as phosphate, $CoSO_4$, 10~20 g/L, $ZnSO_4$ 10~20 g/L as metallic sulfates. This trivalent chromate films which are coated by this chromate conversion coating solution under pH 2.0~2.2, immersion time of 20~25 s at room temperature are able to achieve over 120 h in neutral salt spray test to 5% white rust.

Evaluation of the Corrosion Resistance of Steel Coated with Zinc Using a Cr-free Coating Solution as a Function of Heat Treatment Time (Cr-free 코팅액에 의한 아연도금강판의 건조시간에 따른 내식특성)

  • Seo, Hyun-Soo;Moon, Hee-Joon;Kim, Jong-Soon;Ahn, Seok-Hwan;Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.67-74
    • /
    • 2010
  • Chromate conversion coating is a coating technique used to passivate aluminum, zinc, cadmium, copper, silver, magnesium, tin, and their alloys to slow corrosion. The process uses various toxic chromium compounds, which may include hexavalent chromium. The industry is developing less toxic alternatives in order to comply with substance restriction legislation, such as RoHS. One alternative is to develop a Cr-free coating solution. In this study, eco-friendly, Cr-free solutions (urethane solution S-700, organic/inorganic solution with Si LRO-317) were used. Test specimens were dried in a drying oven at $190^{\circ}C$ for 3, 5, 7, and 9 minutes. Corrosion resistance was evaluated using a salt spray test for 72 hours. The results show that the optimum corrosion resistance was achieved at $190^{\circ}C$ for five minutes for EGI and three or five minutes for HDGI, respectively. The adhesive properties of the two types of coating solutions were superior regardless of drying time.