• Title/Summary/Keyword: zinc removal area

Search Result 15, Processing Time 0.02 seconds

A Study on the Application of Enhanced Phytoremediation with Plant Growth Promoting Rhizobacteria for Zn Contaminated Rice Paddy Soil (식물성장근권 미생물 적용에 의한 Zn 오염 논토양 식물상정화증진기법 적용에 관한 연구)

  • Kim, Tae-Sung;Choi, Sang-Il;Yang, Jae-Kyu;Lee, In-Sook;Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.15-26
    • /
    • 2010
  • The contaminated soils near abandoned mine area can threaten human's health and natural ecosystems through multiple pathways. Remediation of contaminated soil using physicochemical technologies are expensive and destructive of soil environments. On the other hand, environmentally friendly approach that maximize biological remediation, that is, phytoremediation, attracts attention as a low carbon green growth technology. This research is a field demonstration study, focused on the enhanced phytoremediation by bioaugmenting PGPR(Plant Growth Promoting Rhizobacteria)that is helpful on the growth of and heavy metal removal by Echinochloa frumentacea, at a Zn contaminated paddy soil near SamBo mine at Hwasung, Kyunggi. The results showed that the zinc removal by the plant with PSM(Phosphate Solubilizing Bacteria), a kind of PGPR, was three times higher than that by the control. The results are valuable as it is a result from the field-scale technology demonstration. The results also implies that application of PGPR can enhance heavy metal removal from contaminated soil in full scale phytoremediation using Echinochloa frumentacea.

Removal of Pesticide (Endosulphan) from Water via Adsorption onto Activated Carbons Developed from Date Pits

  • Ashour, Sheikha.S.
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.101-107
    • /
    • 2007
  • Activated carbons were prepared by impregnation of crushed clean date pits in concentrated solutions of phosphoric acid or zinc chloride followed by carbonization in absence of air at $600^{\circ}C$. Steam-activated carbon was prepared by gasifying $600^{\circ}C$-carbonization product at $950^{\circ}C$ to a burn-off = 50%. KOH- activated carbon was prepared by impregnating date pitscarbonization product obtained at $450^{\circ}C$ in concentrated KOH solution followed by carbonization at $840^{\circ}C$. Textural properties of these carbons were determined from nitrogen adsorption at $-196^{\circ}C$ and the chemistry of the carbon surface was investigated by determination and of the surface carbon-oxygen (C-O) groups using bases of variable strength and dilute HCl. The adsorption of endosulphan at $27^{\circ}C$ on all the carbons prepared was undertaken. Adsorption of this pesticide at 32 and $37^{\circ}C$ was also undertaken for steam-activated and KOH-activated carbons. Phosphoric acid-activated carbons and steamactivated carbons are mainly microporous and have high surface concentration of C-O groups of acidic nature. Steamactivated and KOH-activated carbons exhibited surface areas > 1000 $m^2/g$ and contain micro and non-micrpores. The adsorption of endosulphan was related to the surface area of non-micropores and was retarded by the high concentration of surface C-O groups. The thermodynamic properties indicated the feasibility of the adsorption process and the possible regeneration of the carbon for further use.

Study of the Performance of a Dry Cleaning Method for Polluted Ballast Gravel of Railroad Fields (철도부지 오염도상자갈의 건식 정화 기술 성능 연구)

  • Cho, Youngmin;Park, Duckshin;Kwon, Tae-Soon;Lee, Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.552-557
    • /
    • 2015
  • Ballast gravel in a railroad field is often polluted by grease and heavy metals. In this paper, the performances of a dry cleaning method for polluted ballast gravel in which pollutants on the gravel surface can be physically removed was extensively studied. A polluted ballast cleaning device able to shoot emery blasting media onto the surface using compressed air was prepared. Polluted ballast gravel was put into this device for cleaning, with the treatment time varied from 1 to 10 min. The cleaning efficiency of the total petroleum hydrocarbons and heavy metals were studied. The total petroleum hydrocarbon removal efficiency was 70-80% for gravels sampled from a locomotive waiting line, while it was 40-60% for gravels sampled from a turnout area. The heavy metal removal efficiency exceeded 90% for copper and lead, while it was 65-80% for nickel and zinc. This system was found to be effective for the remediation of polluted ballast gravels.

The City Rhinoreaction Research of the Corn Feed for the Heavy Metal Removal of the Pig Ordure Sludge Using the Citric Acid and Stability Evaluation (구연산을 이용한 돈분슬러지의 중금속 제거 및 안정성평가를 위한 사료용 옥수수의 시비반응 연구)

  • Oh, Tae-Seok;Kim, Chang-Ho;Choi, Bong-Su
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.4
    • /
    • pp.395-408
    • /
    • 2011
  • The study which it sees exclusions the copper and the zinc which contain in pig sludge, It study pig sludge resources fertilizer production which are rational, pig sludge resources fertilizers after seeding, silage corn it investigates growth characteristics and forage value, the result which investigates pig sludge resources fertilizers effectiveness with afterwards is same. With fertilizer ingredients in pig sludge chemical qualities, the content of the nitrogen and the phosphoric acid comes 4.4% to be 6.29%, pH 7.02 and content of the copper and the zinc which is a heavy metal which contains in pig sludge with 805 mg/kg and 1,704 mg/kg, it is a restrictive standard of the fertilizer, 300 mg/kg and 900 mg/kg it sees to be high, it manufactures citric acid 1 hydrate with the organic acid solution, heavy metals of pig sludge where it is a mixture ratio of the organic acid solution, it divides to 25%, 50%, 75% and 100% 4 kind levels, the result which measures the heavy metal exclusion ratio of the copper and the zinc, the mixture ratio of the organic acid solution to be many exclusion ratio of the copper and the zinc is showing a just interrelation, from organic acid solution 100% level content of pig sludge remains copper and zinc 330.03 mg/kg and 41.28 mg/kg, it shows the exclusion ratio of copper 59% zinc 97%. 'Cheonganok' growth characteristics with citric acid 1 hydrate, Treatment 2 and control growth characteristics etc, it exclusion the copper and the zinc it doesn't appear on significant difference statistically but, treatment 3 after only pig sludge in resources disposal where it seeding, growth characteristics of leaf area etc. is badness, it compares in control and treatment 2 the growth characteristics badness, it is appearing, it is caused by with disease and insects occurrence of $Ostrinia$ $furnacalis$ and brown spot, the damage was many. From forage value, Treatment 2 where it exclusion the heavy metal with the citric acid 1 hydrate with control it compares and there are not significant difference from crude protein and ADF and NDF contents etc., seeding only Pig Sludge in resources disposal treatment 3, it is caused by with $Ostrinia$ $furnacalis$ etc., trunk and aging of the leaf to be high ADF content is low. but from crude protein, the nitrogen ingredient which pig sludge has and interrelation it seemed and high numerical value were confirmed.

Comparison of Soil Washing for Heavy Metal Contaminated Shooting Range Using Various Extracts (다양한 추출용매를 이용한 중금속 오염 사격장 토양세척 비교)

  • Lee, Jun-Ho;Park, Kap-Song
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.123-136
    • /
    • 2010
  • In order to remediate heavy metal contaminated Nong island, Maehyang-ri shooting range soils through the batch reactor scale washing were evaluated. The experiment texture soil of N3 in the Nong island at north side incline was (g)mS containing 12.9% gravel, 47.0% sand, 35.1% silt and 5.0% clay. And the N3 soil area was contaminated with Cd($22.5\pm1.9$ ppm), Cu($35.5\pm4.0$ ppm), Pb($1,279.0\pm5.1$ ppm) and Zn($403.4\pm9.8$ ppm). The EDTA(ethylene diamine tetra acetic acid, $C_{10}H_{16}N_2O_8$) in the N3 soil was observed as most effective extractants among the 5 extractants(citric acid, EDTA, phosphoric acid, potassium phosphate and oxalic acid) tested. And chemical partitioning of heavy metals after washing N3 soil with EDTA was evaluated. Removal efficiency of residual fractions was higher than that of non-residual fractions. To choose EDTA extractant which is the most effective in soil washing technology using batch reactor process cleaning Pb and Zn contaminated sits; Pb and Zn removal rates were investigated 92.4%, 94.0% removal(1,000 mM, soil:solution=5, $20^{\circ}C$, 24 hour shaking, pH=2, 200 RPM), respectively. The results of the batch test showed that the removal efficiency curve was logarithmic in soil was removal. Thus, EDTA washing process can be applied to remediate the Pb and Zn contaminated soil used in this study.