• Title/Summary/Keyword: zinc finger proteins

Search Result 52, Processing Time 0.029 seconds

The Effect of Jazf1 Overexpression in Zebrafish Cardiac Development

  • Shin, Mi-Jung;Yuh, Hyung-Soo;Seo, Byoung-Boo;Park, Hum-Dai;Yoon, Du-Hak;Ryoo, Zae-Young
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.457-461
    • /
    • 2011
  • JAZF1 (Juxtaposed with Another Zinc Finger gene 1) transcription factor are Zn-finger proteins that bind to the nuclear orphan receptor TAK/TR4 (Nakajima et al., 2004). The nuclear orphan receptor TAK1/TR4 functions as a positive as well as a negative regulator of transcription. It was recently reported that congenital cardiovascular malformations are significantly more frequent in Neurofibromatosis 1 (NF1) patients with microdeletion syndrome than in those with classical NF1. JAZF1 was expressed in adult heart of patients with microdeletion syndrome. JAZF1 is highly conserved among various species include zebrafish. We hypothesized that the expression of zebrafish Jazf1 may lead to severe forms of congenital heart disease that allow the survival of newborns and adults. In this study, we created Jazf1 transgenic zebrafish which over-express zebrafish Jazf1 cDNA under control of the CMV promoter. Our results suggested that Jazf1 expression may play an important role in zebrafish cardiac development.

Characterization of a Stress-Responsive Ankyrin Repeat-Containing Zinc Finger Protein of Capsicum annuum (CaKR1)

  • Seong, Eun-Soo;Choi, Do-Il;Cho, Hye-Sun;Lim, Chun-Keum;Cho, Hye-Jeong;Wang, Myeong-Hyeon
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.952-958
    • /
    • 2007
  • We isolated many genes induced from pepper cDNA microarray data following their infection with the soybean pustule pathogen Xanthomonas axonopodis pv. glycines 8ra. A full-length cDNA clone of the Capsicum annuum ankyrin-repeat domain $C_3H_1$ zinc finger protein (CaKR1) was identified in a chili pepper using the expressed sequence tag (EST) database. The deduced amino acid sequence of CaKR1 showed a significant sequence similarity (46%) to the ankyrin-repeat protein in very diverse family of proteins of Arabidopsis. The gene was induced in response to various biotic and abiotic stresses in the pepper leaves, as well as by an incompatible pathogen, such as salicylic acid (SA) and ethephon. CaKR1 expression was highest in the root and flower, and its expression was induced by treatment with agents such as NaCl and methyl viologen, as well as by cold stresses. These results showed that CaKR1 fusion with soluble, modified green fluorescent protein (smGFP) was localized to the cytosol in Arabidopsis protoplasts, suggesting that CaKR1 might be involved in responses to both biotic and abiotic stresses in pepper plants.

An EST survey of genes expressed in liver of rock bream(Oplegnathus fasciatus) with particular interests on the stress-responsive and immune-related genes

  • Park, Byul-Nim;Park, Ji-Eun;Kim, Ki-Hong;Kim, Dong-Soo;Nam, Yoon-Kwon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.43-43
    • /
    • 2003
  • EST analysis was performed to identify stress-responsive and immune-related genes from rock bream (Oplegnathus fasciatus). cDNA libraries were constructed with liver and randomly chosen 624 clones were subjected to automated sequence analysis. Of 624 clones sequenced in total, approximately 15% of ESTs was novel sequences (no match to GenBank) or sequences with high homology to hypothetical/unknown genes. The bioinforamtic sequence analysis including functional clustering, homology grouping, contig assembly with electronic northern and organism matches were carried out. Several potential stress-responsive biomarker and/or immune-related genes were identified in all the tissues examined. It included lectins, ferritins, CP450, proteinase, proteinase inhibitors, anti-oxidant enzymes, various heat-shock proteins, warm temperature acclimation protein, complements, methyltransferase, zinc finger proteins, lysozymes, macrophage maturation associated protein, and others. This information will offer new possibilities as fundamental baseline data for understanding and addressing their molecular mechanism involved in host defense and immune systems of this species.

  • PDF

Oligomer Model of PB1 Domain of p62/SQSTM1 Based on Crystal Structure of Homo-Dimer and Calculation of Helical Characteristics

  • Lim, Dahwan;Lee, Hye Seon;Ku, Bonsu;Shin, Ho-Chul;Kim, Seung Jun
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.729-738
    • /
    • 2019
  • Autophagy is an important process for protein recycling. Oligomerization of p62/SQSTM1 is an essential step in this process and is achieved in two steps. Phox and Bem1p (PB1) domains can oligomerize through both basic and acidic surfaces in each molecule. The ZZ-type zinc finger (ZZ) domain binds to target proteins and promotes higher-oligomerization of p62. This mechanism is an important step in routing target proteins to the autophagosome. Here, we determined the crystal structure of the PB1 homo-dimer and modeled the p62 PB1 oligomers. These oligomer models were represented by a cylindrical helix and were compared with the previously determined electron microscopic map of a PB1 oligomer. To accurately compare, we mathematically calculated the lead length and radius of the helical oligomers. Our PB1 oligomer model fits the electron microscopy map and is both bendable and stretchable as a flexible helical filament.

Characterization of transcription factor genes related to cold tolerance in Brassica napus

  • Sharma, Mayur Mukut Murlidhar;Ramekar, Rahul Vasudeo;Park, Nam-Il;Choi, Ik-Young;Choi, Seon-Kang;Park, Kyong-Cheul
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.45.1-45.8
    • /
    • 2021
  • Brassica napus is the third most important oilseed crop in the world; however, in Korea, it is greatly affected by cold stress, limiting seed growth and production. Plants have developed specific stress responses that are generally divided into three categories: cold-stress signaling, transcriptional/post-transcriptional regulation, and stress-response mechanisms. Large numbers of functional and regulatory proteins are involved in these processes when triggered by cold stress. Here, our objective was to investigate the different genetic factors involved in the cold-stress responses of B. napus. Consequently, we treated the Korean B. napus cultivar Naehan at the 4-week stage in cold chambers under different conditions, and RNA and cDNA were obtained. An in silico analysis included 80 cold-responsive genes downloaded from the National Center for Biotechnology Information (NCBI) database. Expression levels were assessed by reverse transcription polymerase chain reaction, and 14 cold-triggered genes were identified under cold-stress conditions. The most significant genes encoded zinc-finger proteins (33.7%), followed by MYB transcription factors (7.5%). In the future, we will select genes appropriate for improving the cold tolerance of B. napus.

Proteomic Analysis of a Rat Cerebral Ischemic Injury Model after Human Cerebral Endothelial Cell Transplantation

  • Choi, Tae-Min;Yun, Misun;Lee, Jung-Kil;Park, Jong-Tae;Park, Man-Seok;Kim, Hyung-Seok
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.6
    • /
    • pp.544-550
    • /
    • 2016
  • Objective : Cerebral endothelial cells have unique biological features and are fascinating candidate cells for stroke therapy. Methods : In order to understand the molecular mechanisms of human cerebral endothelial cell (hCMEC/D3) transplantation in a rat stroke model, we performed proteomic analysis using 2-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein expression was confirmed by quantitative real-time PCR and Western blot. Results : Several protein spots were identified by gel electrophoresis in the sham, cerebral ischemia (CI), and CI with hCMEC/D3 treatment cerebral ischemia with cell transplantation (CT) groups, and we identified 14 differentially expressed proteins in the CT group. Proteins involved in mitochondrial dysfunction (paraplegin matrix AAA peptidase subunit, SPG7), neuroinflammation (peroxiredoxin 6, PRDX6), and neuronal death (zinc finger protein 90, ZFP90) were markedly reduced in the CT group compared with the CI group. The expression of chloride intracellular channel 4 proteins involved in post-ischemic vasculogenesis was significantly decreased in the CI group but comparable to sham in the CT group. Conclusion : These results contribute to our understanding of the early phase processes that follow cerebral endothelial cell treatment in CI. Moreover, some of the identified proteins may present promising new targets for stroke therapy.

Proteomics Analysis of Gastric Epithelial AGS Cells Infected with Epstein-Barr Virus

  • Ding, Yong;Li, Xiao-Rong;Yang, Kai-Yan;Huang, Li-Hua;Hu, Gui;Gao, Kai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.367-372
    • /
    • 2013
  • Effects of the Epstein-Barr virus (EBV) on cellular protein expression are essential for viral pathogenesis. To characterize the cellular response to EBV infection, differential proteomes of gastric epithelial AGS cells were analyzed with two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and liquid chromatography electrospray/ionization ion trap (LC-ESI-IT) mass spectrometry identification. Mass spectrometry identified 9 altered cellular proteins, including 5 up-regulated and 4 down-regulated proteins after EBV infection. Notably 2-DE analysis revealed that EBV infection induced increased expression of heat shock cognate 71 kDa protein, actin cytoplasmic 1, pyridoxine-5'-phosphate oxidase, caspase 9, and t-complex protein 1 subunit alpha. In addition, EBV infection considerably suppressed those cellular proteins of zinc finger protein 2, cyclin-dependent kinase 2, macrophage-capping protein, and growth/differentiation factor 11. Furthermore, the differential expressional levels of partial proteins (cyclin-dependent kinase 2 and caspase 9) were confirmed by Western blot analysis.Thus, this work effectively provided useful protein-related information to facilitate further investigation of the mechanisms underlying EBV infection and pathogenesis.

Expression characterization and transcription regulation analysis of porcine Yip1 domain family member 3 gene

  • Ni, Dongjiao;Huang, Xiang;Wang, Zhibo;Deng, Lin;Zeng, Li;Zhang, Yiwei;Lu, Dongdong;Zou, Xinhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.398-407
    • /
    • 2020
  • Objective: The Yip1 domain family (YIPF) proteins were proposed to function in endoplasmic reticulum (ER) to Golgi transport and maintenance of the morphology of the Golgi, which were homologues of yeast Yip1p and Yif1p. YIPF3, the member 3 of YIPF family was a homolog of Yif1p. The aim of present study was to investigate the expression and regulation mechanism of porcine YIPF3. Methods: Quantitative realtime polymerase chain reaction (qPCR) was used to analyze porcine YIPF3 mRNA expression pattern in different tissues and pig kidney epithelial (PK15) cells stimulated by polyinosine-polycytidylic acid (poly [I:C]). Site-directed mutations combined with dual luciferase reporter assays and electrophoretic mobility shift assay (EMSA) were employed to reveal transcription regulation mechanism of porcine YIPF3. Results: Results showed that the mRNA of porcine YIPF3 (pYIPF3) was widely expressed with the highest levels in lymph and lung followed by spleen and liver, while weak in heart and skeletal muscle. Subcellular localization results indicated that it expressed in Golgi apparatus and plasma membranes. Upon stimulation with poly (I:C), the level of this gene was dramatically up-regulated in a time- and concentration-dependent manner. pYIPF3 core promoter region harbored three cis-acting elements which were bound by ETS proto-oncogene 2 (ETS2), zinc finger and BTB domain containing 4 (ZBTB4), and zinc finger and BTB domain containing 14 (ZBTB14), respectively. In which, ETS2 and ZBTB4 both promoted pYIPF3 transcription activity while ZBTB14 inhibited it, and these three transcription factors all played important regulation roles in tumorigenesis and apoptosis. Conclusion: The pYIPF3 mRNA expression was regulated by ETS2, ZBTB4, and ZBTB14, and its higher expression in immune organs might contribute to enhancing ER to Golgi transport of proteins, thus adapting to the immune response.

Structure-Function Analysis of DNA Binding Domain of the Yeast ABF1 Protein (효모 ABF1 단백질의 DNA Binding 부위에 대한 구조 기능 연구)

  • Cho, Gi-Nam;Lee, Sang-Kyung;Kim, Hong-Tae;Kim, Ji-Young;Rho, Hyune-Mo;Jung, Gu-Hung
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.102-108
    • /
    • 1994
  • Autonomously replicating sequence Binding Factor 1(ABF1) is a DNA-binding protein that specifically recognizes the $RTCRYN_5ACG$ at many sites in the yeast genome including the promoter element, mating-type silencer and ARS. To express the intact full-length ABF1 gene in E. coli, the ABF1 gene has been cloned into pMAL-c2 and His-61, Leu-353 and Leu-360 were substituted with other amino acid. ABF1 fusion proteins of wild type ABF1 and H61A, L353R and L360R nutants were purified by amylose resin affinity chromatography. Fusion protein of MBP and ABF1 was digested by Factor Xa and Characterized by gel retardation assay and complementation test. As aresult, we suggested that other DNA binding motif except atypical inc-finger motif is in the middle region of ABF1.

  • PDF

Mechanisms of Myotonic Dystrophies 1 and 2

  • Lubov, Timchenko
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Myotonic Dystrophies type 1 and 2 (DM1/2) are neuromuscular disorders which belong to a group of genetic diseases caused by unstable CTG triplet repeat (DM1) and CCTG tetranucleotide repeat (DM2) expansions. In DM1, CTG repeats are located within the 3' untranslated region of myotonin protein kinase (DMPK) gene on chromosome 19q. DM2 is caused by expansion of CCTG repeats located in the first intron of a gene coding for zinc finger factor 9 on chromosome 3q. The CTG and CCTG expansions are located in untranslated regions and are expressed as pre-mRNAs in nuclei (DM1 and DM2) and as mRNA in cytoplasm (DM1). Investigations of molecular alterations in DM1 discovered a new molecular mechanism responsible for this disease. Expansion of un-translated CUG repeats in the mutant DMPK mRNA disrupts biological functions of two CUG-binding proteins, CUGBP and MNBL. These proteins regulate translation and splicing of mRNAs coding for proteins which play a key role in skeletal muscle function. Expansion of CUG repeats alters these two stages of RNA metabolism in DM1 by titrating CUGBP1 and MNBL into mutant DMPK mRNA-protein complexes. Mouse models, in which levels of CUGBP1 and MNBL were modulated to mimic DM1, showed several symptoms of DM1 disease including muscular dystrophy, cataracts and myotonia. Mis-regulated levels of CUGBP1 in newborn mice cause a delay of muscle development mimicking muscle symptoms of congenital form of DM1 disease. Since expansion of CCTG repeats in DM2 is also located in untranslated region, it is predicted that DM2 mechanisms might be similar to those observed in DM1. However, differences in clinical phenotypes of DM1 and DM2 suggest some specific features in molecular pathways in both diseases. Recent publications suggest that number of pathways affected by RNA CUG and CCUG repeats could be larger than initially thought. Detailed studies of these pathways will help in developing therapy for patients affected with DM1 and DM2.