• Title/Summary/Keyword: zigzag driving

Search Result 5, Processing Time 0.018 seconds

Design and Implementation of a System to Detect Zigzag Driving using Sensor (센서를 이용한 사행 운전 검출 시스템 설계 및 구현)

  • Jeong, Seon-Mi;Kim, Gea-Hee;Mun, Hyung-Jin;Kim, Chang-Geun
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.305-311
    • /
    • 2016
  • Even though automakers have actively been conducting studies on autonomous navigation thanks to the development and application of wireless Internet technology, the traffic accident has been kept unsolved. The causes of the accident are drowsy driving, a mistake of a driver, environmental factors, and a wrong road structure; Driving manner and characteristics of a driver among the causes are significantly influential for the accident. In this paper, a study to measure characteristics of zigzag driving that can be seen before an occurrence of an accident regarding traffic accidents that can be incurred while driving manually or autonomously was conducted. While existing studies measured zigzag driving based on characteristics of the change of lateral angular velocity by imaging techniques or driving manner on the first and second lane, this study proceeded to measure zigzag driving by setting a lateral moving distance and a critical value range by utilizing the value of a sensor.

Detection of Unsafe Zigzag Driving Maneuvers using a Gyro Sensor (자이로센서를 이용한 사행운전 검지 및 경고정보 제공 알고리즘 개발)

  • Rim, Hee-Sub;Jeong, Eun-Bi;Oh, Cheol;Kang, Kyeong-Pyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.42-54
    • /
    • 2011
  • This study presented an algorithm to detect zigzag driving maneuver that is highly associated with vehicle crash occurrence. In general, the zigzag driving results from the driver's inattention including drowsy driving and driving while intoxicated. Therefore, the technology to detect such unsafe driving maneuver will provide us with a valuable opportunity to prevent crash in the road. The proposed detection algorithm used angular velocity data obtained from a gyro sensor. Performance evaluations of the algorithm presented promising results for the actual implementation in practice. The outcome of this study can be used as novel information contents under the ubiquitous transportation systems environment.

Fatigue Life Prediction of a Multi-Purpose Vehicle Frame (MPV 프레임의 피로수명 예측)

  • 천인범;조규종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.146-152
    • /
    • 1998
  • Recently, for the development of vehicle structures and components there is a tendency to increase using numerical simulation methods compared with practical tests for the estimation of the fatigue strength. In this study, an integrated powerful methodology is suggested for fatigue strength evaluation through development of the interface program to integrate dynamic analysis quasi-static stress analysis and fatigue analysis, which were so far used independently. To verify the presented evaluation method, a single and zigzag bump run test, 4-post road load simulation and driving durability test have been performed. The prediction results show a good agreement between analysis and test. This research indicates that the integrated life prediction methodology can be used as a reliable design tool in the pre-prototype and prototype development stage, to reduce the expense and time of design iteration.

  • PDF

Local Path Plan for Unpaved Road in Rough Environment (야지환경의 비포장도로용 지역경로계획)

  • Lee, Young-Il;Choe, Tok Son;Park, Yong Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.726-732
    • /
    • 2013
  • It is required for UGV(Unmanned Ground Vehicle) to have a LPP(Local Path Plan) component which generate a local path via the center of road by analyzing binary map to travel autonomously unpaved road in rough environment. In this paper, we present the method of boundary estimation for unpaved road and a local path planning method based on RANGER algorithm using the estimated boundary. In specially, the paper presents an approach to estimate road boundary and the selection method of candidate path to minimize the problem of zigzag driving based on Bayesian probability reasoning. Field test is conducted with scenarios in rough environment in which bush, tree and unpaved road are included and the performance of proposed method is validated.

Shakedown Analysis of Shaft in Bearing-Shaft Assembly (베어링-축 조립체에서 축의 셰이크다운에 관한 연구)

  • Park, Heung-Geun;Park, Jin-Mu;O, Yun-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1740-1747
    • /
    • 2000
  • Under repeated rolling, initial plastic deformation introduces residual stresses which render the steady cyclic state purely elastic. This is called the process of shakedown. Many studies have been done about the shakedown in semi-infinite half space using calculated Hertizian pressure. In this paper shakedown processes in a shaft are studied by finite element analyses of a two dimensional(plane strain) model with elastic-linear-kinematic-hardening-plastic material subjected to repeated, frictionless rolling contact. Symmetric and non-symmetric pressure distributions are obtained using a simplified model of the bearing-shaft assembly. The rolling contact is simulated by repeatedly translating both pressure distributions along the surface of the shaft. By the influence of the non-symmetric pressure, larger residual radial tensile stress is generated in the immediate subsurface layer, which may make a crack propagate and, the subsurface undergoes a zigzag plastic deformation during the shakedown process, which may lead to a crack initiation.