• Title/Summary/Keyword: zero - emission

Search Result 209, Processing Time 0.023 seconds

Study on Gangwon Wind Park CDM project (강원풍력발전 CDM 사업 사례 연구)

  • Park, Keum-Joo;Jung, Jae-Soo;Lee, Moon-Gu;Kim, Doo-Hoon
    • New & Renewable Energy
    • /
    • v.2 no.1 s.5
    • /
    • pp.66-71
    • /
    • 2006
  • CDM(Clean Development Mechanism) is one of three Kyoto mechanisms. As a non-annex I party of UNFCCC, Korea can host CDM projects. Currently eight CDM projects are hosted in Korea under Kyoto protocol. Six of these CDM projects are related to renewable energy power generation. Renewable energy power plants assumes zero GHGs emission and has great potential to become COM projects which is very environmental friendly energy. Gangwon wind park CDM project is the first renewable CDM project in Korea. In this research, emission factors and additionality proving process are studied, which are important procedures of doing CDM project.

  • PDF

Spectroscopic Properties and Ligand Field Analysis of Pentaammine(imidazole)chromium(III) Perchlorate

  • 최종하
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.81-84
    • /
    • 1999
  • The emission and excitation spectra of [Cr(NH3)5(imH)](ClO4)3·H2O (imH=imidazole) taken at 77 K are reported. The 298 K visible and far-infrared spectra are also measured. The vibrational intervals of the electronic ground state are extracted from the far-infrared and emission spectra. The ten electronic bands due to spin-allowed and spin-forbidden transitions are assigned. Using the observed transitions, a ligand field analysis has been performed to determine the bonding properties of coordinated imidazole in the title chromium(Ⅲ) complex. It is confirmed that nitrogen atom of the imidazole ligand has a medium it-acceptor property toward chromium(Ⅲ) ion. The zero-phonon line in the excitation spectrum splits into two components by 181 cm-1, and the large 2Eg splitting can be reproduced by the ligand field theory.

Fuel Cell Track Rapid Transit for Metro Area (도시형 연료전지 궤도차량 시스템)

  • Chang, Seky;Mok, Jai-Kyun;Moon, Kyeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.842-846
    • /
    • 2004
  • Both traffic congestion and air pollution in the metropolitan area can be greatly relieved by promoting the use of public transportation with zero emission system. Bus and subway are very convenient means for the people moving in the route areas. But they are not enough to satisfy handicapped or old people to have access to them and also do not solve environmental problems completely. New vehicle system, fuel cell track rapid transit, will be introduced as a countermeasure for such problems in the present paper.

  • PDF

연료전지용 분리막

  • 원종옥
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.03a
    • /
    • pp.123-134
    • /
    • 2004
  • 연로로부터 화학에너지를 직접 전기에너지로 바꾸는 연료전지(Fuel Cells)중 고체형 고분자 전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC)와 직접 메탄올 연료전지(Direct Methanol Fuel Cell: DMFC)는 효율이 높고, zero emission 가능성으로 차세대 수송용 전원으로 각광받고 있는 미래 환경친화적 에너지원이다. 수소와 산소(또는 공기)와의 반응을 이용한 것이 PEMFC이고, 수소를 연료로 쓰지 않고 액체상 메탄올을 직접 연료로 사용하는 것이 DMFC이다. (중략)

  • PDF

Carbonization of Municipal Wastes (생활 폐기물의 열분해 연료화)

  • 심성훈;김석준;김우현;길상인;윤진한;홍성훈;백익현
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.617-620
    • /
    • 2003
  • 열분해를 이용한 폐기물의 처리가 여러 유해물질을 저감시킬 수 있다는 기대감으로 국내에서도 열분해를 이용한 폐기물 처리 관련 연구가 많이 진행되고 있다. 아울러 폐기물을 열분해 한 후에 산소를 공급하여 가스화와 동시에 잔재를 용융시키는 열분해 가스화 용융이나 예열공기와 혼합하여 고온으로 연소시키면서 잔재를 용융하는 열분해 연소 용융 등의 방식이 개발되면서 다이옥신과 소각재의 발생을 차단하는, 환경적으로는 제로 에미션(zero-emission)에 근접하는 기술에 대한 관심도 높아지고 있다.(중략)

  • PDF

DEVELOPMENT ON ENHANCED LEAKED FUEL RECIRCULATION DEVICE OF LPLi ENGINE TO SATISFY SULEV STANDARD

  • Myung, C.L.;Kwak, H.;Park, S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.407-413
    • /
    • 2006
  • The liquefied petroleum gas(LPG), mixture of propane and butane, has the potential to reduce toxic hydrocarbon emissions and inhibit ozone formation due to its chemical composition. Conventional mixer systems, however, have problems in meeting the future lower emission standards because of the difficulty in controlling air-fuel ratio precisely according to mileage tar accumulation. Liquid Phase LPG injection(LPLi) system has several advantages in more precise fuel metering and higher engine performance than those of the conventional mixer type. On the other hands, leakage problem of LPLi system at the injector tip is a main obstacle for meeting more stringent future emission regulations because these phenomena might cause excessive amount of THC emission during cold and hot restart phase. The main focus of this paper is the development of a leaked fuel recirculation system, which can eliminate the leaked fuel at the intake system with the activated carbon canister. Leaked fuel level was evaluated by using a fast response THC analyzer and gas chromatography. The result shows that THC concentration during cold and hot restart stage decreases by over 60%, and recirculation system is an effective method to meet the SULEV standard of the LPLi engine.

The Study on the Global Emission Reduction Commitments and Environment Change After Climate Agreement (기후협정후의 배출감소와 환경변화이행에 관한 연구)

  • Kim, Kyung-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.319-328
    • /
    • 2014
  • Although most of the debate on global climate change policy has focused on quantity controls due to their political appeal, this paper argues that agreement commitment are more efficient. Scenarios show that to have a likely chance of limiting the increase in global mean temperature to two degrees Celsius, means lowering global greenhouse gas emissions by 40 to 70 percent compared with 2010 by mid-century, and to near-zero by the end of this century. Ambitious mitigation may even require removing carbon dioxide from the atmosphere. This paper emphasizes on global cooperation which is a key for preventing global warming and toward sustainable development, and fair emission reduction targets among countries are significant for achieving emission reductions.

Study for the Design of Zero-carbon City through the Application of Renewable Energies (신재생에너지 적용기술이 저탄소녹색도시건설에 미치는 영향연구)

  • Park, Young-Gyu;Kim, Jeong-In;Kim, Kap-Chul
    • New & Renewable Energy
    • /
    • v.6 no.4
    • /
    • pp.15-29
    • /
    • 2010
  • In order to make the best choice for $CO_2$ abatement using renewable energy technologies, it is important to be able to adapt these technologies on the basis of their sustainability, which may include a variety of environmental indicators. This study examined the comparative sustainability of renewable technologies in terms of their life cycle $CO_2$ emissions and embodied energy, using life cycle analysis. The models developed were based on case studies of bioenergy pilot plant in P city of Kyungki province. Final results were total emission of $CO_2$ in Pocheonsi is 670,041 $tCO_2$, around 500,877 $tCO_2$ for electricity and for heat generation, and 169,164 $tCO_2$ for transportation. When used $1,984\;m^3$/day of waste (pig manure etc.) and operated CHP with wood chips of 144,664 ton/year, the $CO_2$ emission in P city was left as is an emission of 449,274 $tCO_2$ and an abatement of $CO_2$ in this region was increased by 32.9%.

Effect of low H2 content in natural gas on the Combustion Characteristics of Gas Turbine (천연가스 내 미량의 수소함량이 가스터빈의 연소특성에 미치는 영향)

  • Lee, Min Chul;Park, Seik;Kim, Sungchul;Yoon, Jisoo;Joo, Sungpeel;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.109-110
    • /
    • 2013
  • This paper describes gas turbine combustion characteristics of synthetic natural gas which contains a small amount hydrogen content. By conducting ambient pressure high temperature combustion test at gas turbine relevant combustor geometry, the combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, nozzle and dump plane, and flame structure from high speed OH chemiluminescence images were investigated when changing hydrogen content from zero to 5%. From the results, qualitative and quantitative relationships are derived between key aspects of combustion performance, notably NOx/CO emission and combustion instability. Natural gas containing hydrogen up to 5% does not show significant difference in view of all combustion characteristics except combustion instability. Only up to 1% hydrogen addition could not change the pressure fluctuation and phase gas between fluctuations of pressure and heat release. From the results, it can be concluded that synthetic national gas which contains 1% of hydrogen can be guaranteed for the stable and reliable operation of natural gas firing gas turbine.

  • PDF

EXPERIMENTAL APPROACH FOR EVALUATING EXHAUST FLOW DISTRIBUTION FOR PZEV EXHAUST MANIFOLDS USING A SIMULATED DYNAMIC FLOW BENCH

  • Hwang, I.G.;Myung, C.L.;Kim, H.S.;Park, S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.575-581
    • /
    • 2007
  • As current and future automobile emission regulations become more stringent, the research on flow distribution for an exhaust manifold and close-coupled catalyst(CCC) has become an interesting and remarkable subjects. The design of a CCC and exhaust manifold is a formidable task due to the complexity of the flow distribution caused by the pulsating flows from piston motion and engine combustion. Transient flow at the exhaust manifold can be analyzed with various computational fluid dynamics(CFD) tools. However, the results of such simulations must be verified with appropriate experimental data from real engine operating condition. In this study, an experimental approach was performed to investigate the flow distribution of exhaust gases for conventional cast types and stainless steel bending types of a four-cylinder engine. The pressure distribution of each exhaust sub-component was measured using a simulated dynamic flow bench and five-hole pitot probe. Moreover, using the results of the pitot tube measurement at the exit of the CCC, the flow distribution for two types of manifolds(cast type and bending type) was compared in terms of flow uniformity. Based on these experimental techniques, this study can be highly applicable to the design and optimization of exhaust for the better use of catalytic converters to meet the PZEV emission regulation.