• 제목/요약/키워드: yucca

검색결과 54건 처리시간 0.022초

사용후연료의 건식처리 발생 hull 폐기물의 처리(II)

  • 김준형;김인태
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2009년도 학술논문요약집
    • /
    • pp.177-177
    • /
    • 2009
  • 사용후 핵연료의 건식처리 시 핵연료 다발을 절단하여 voloxidation 즉 휘발산화처리를 하면 고온에 의해 분리가 가능한 핵분열생성물의 분리와 우라늄의 산화에 의한 부피팽창으로 핵연료가 쪼개져서 입도가 작아지고 또한 핵연료가 피복재에서 쉽게 박리되게 된다. 그 결과 폐기물 처리 시에 발열핵종으로 폐기물의 저준위화시에 분리가 요망되는 Cs-137이 분리되는 장점이 있어 습식 재처리에 있어서도 바람직하다. 건식처리에 있어서는 voloxidation 으로 처리된 피복재에는 금속 지르코늄에 불순물로 함유된 우라늄의 의한 방사화 생성물과 피복재 표변에 부착/침투한 방사화 생성물이 방사능을 갖게 된다. 이러한 부착된 TRU 잔류물은 통상 1% 미만으로 알파핵종의 방사능이 원자로에서 배출시에는 고준위 기준치의 약 100배 수준이었다가 30년 냉각후에는 약 1/10 수준으로 저준위화 된다. 지르코늄 금속중에 불순물로 함유된 우라늄의 방사화로 생기는 방사능은 고준위 기준치의 10% 를 넘지 않아서 피복재의 저준위화시에 고려할 필요가 없다. 발생열은 방출시에 고준위 기준치의 약 30 배 수준에서 5년 냉각후에는 기준치 미만이 되며 30년후에는 1/8000 정도로 저준위화 된다. 사용후 핵연료를 습시처리시에 발생하는 고준위 폐기물 중 약 1/4 가 피복재 (hull) 임을 고려하면 피복재의 저준위화는 사용후 연료의 건식처리에 있어서도 필수적인 과정이다. 특히 미국의 고준위 폐기물 처분장 Yucca Mt.의 포기와 우리의 고준위 폐기불 처분장이 공론화되는 싯점에서 저준위화는 매우 필요한 기술이다. 피복재는 방사성 물질의 침투두께가 0.01mm 미만이 대부분으로 저준위화에는 표면제염에 의한 저준위화가 주로 연구되어왔다. 표면제염에 의한 저준화는 이온 빔, laser에 의한 방법, dry ice 분사에 의한 방법이 시도되었다. 염소기체를 이용하여 지르코늄의 산화막을 제거하고자 하였으나 이 산화막이 안정적이어서 표변의 연마, 아크릴 칼의 사용, 표면을 눌러서 처리하는 등 전처리하여서 염소기체 반응에 의한 표면제거 실험이 가장 효과적임이 실험적 결과이었다. 이러한 전처리로 방사능을 1/100 수준으로 낮춘다고 하더라도 지르코늄 금속중에 불순물로 함유된 우라늄의 방사화에 의해 중저준위 폐기물의 범주에서 벗어나지 않으므로 재활용에는 제한이 있다. 또한 전처리(표면제염)하여 분리되는 고준위는 다른 고준위 염폐기물과 함께 처리하여 발열 핵종을 제거하면 중저준위화가 가능하다. 저준위화 된 hull폐기물에는 지르코늄 금속에 불순물로서 함유되어있는 우라늄에 의한 방사능을 갖는데 이들의 제거나 분리는 지르코늄 합금 피복재 원료물질에 불순물로 함유하는 우라늄의 함량을 낮추는 것과 유사한 문제이다. 현재까지 지르코늄합금 피복재에 우라늄이 불순물로 함유된 것을 사용함으로 원자로내에서 방사화되어서 방사능을 갖게 되는 것은 피할 수가 없다. 따라서 저준위화 처리된 피복재는 장기 보관으로 방사능을 감쇠시켜서 재활용하도록 한다. 처리 방법으로는 초고압 압축저장, 시멘트 고화, 합성암석에 의한 고화법 등으로 장기간 보관 후에 금속으로서 재활용한다.

  • PDF

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권2호
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.

Glass Dissolution Rates From MCC-1 and Flow-Through Tests

  • Jeong, Seung-Young
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.257-258
    • /
    • 2004
  • The dose from radionuclides released from high-level radioactive waste (HLW) glasses as they corrode must be taken into account when assessing the performance of a disposal system. In the performance assessment (PA) calculations conducted for the proposed Yucca Mountain, Nevada, disposal system, the release of radionuclides is conservatively assumed to occur at the same rate the glass matrix dissolves. A simple model was developed to calculate the glass dissolution rate of HLW glasses in these PA calculations [1]. For the PA calculations that were conducted for Site Recommendation, it was necessary to identify ranges of parameter values that bounded the dissolution rates of the wide range of HLW glass compositions that will be disposed. The values and ranges of the model parameters for the pH and temperature dependencies were extracted from the results of SPFT, static leach tests, and Soxhlet tests available in the literature. Static leach tests were conducted with a range of glass compositions to measure values for the glass composition parameter. The glass dissolution rate depends on temperature, pH, and the compositions of the glass and solution, The dissolution rate is calculated using Eq. 1: $rate{\;}={\;}k_{o}10^{(ph){\eta})}{\cdot}e^{(-Ea/RT)}{\cdot}(1-Q/K){\;}+{\;}k_{long}$ where $k_{0},\;{\eta}$ and Eaare the parameters for glass composition, pH, $\eta$ and temperature dependence, respectively, and R is the gas constant. The term (1-Q/K) is the affinity term, where Q is the ion activity product of the solution and K is the pseudo-equilibrium constant for the glass. Values of the parameters $k_{0},\;{\eta}\;and\;E_{a}$ are the parameters for glass composition, pH, and temperature dependence, respectively, and R is the gas constant. The term (1-Q/C) is the affinity term, where Q is the ion activity product of the solution and K is the pseudo-equilibrium constant for the glass. Values of the parameters $k_0$, and Ea are determined under test conditions where the value of Q is maintained near zero, so that the value of the affinity term remains near 1. The dissolution rate under conditions in which the value of the affinity term is near 1 is referred to as the forward rate. This is the highest dissolution rate that can occur at a particular pH and temperature. The value of the parameter K is determined from experiments in which the value of the ion activity product approaches the value of K. This results in a decrease in the value of the affinity term and the dissolution rate. The highly dilute solutions required to measure the forward rate and extract values for $k_0$, $\eta$, and Ea can be maintained by conducting dynamic tests in which the test solution is removed from the reaction cell and replaced with fresh solution. In the single-pass flow-through (PFT) test method, this is done by continuously pumping the test solution through the reaction cell. Alternatively, static tests can be conducted with sufficient solution volume that the solution concentrations of dissolved glass components do not increase significantly during the test. Both the SPFT and static tests can ve conducted for a wide range of pH values and temperatures. Both static and SPFt tests have short-comings. the SPFT test requires analysis of several solutions (typically 6-10) at each of several flow rates to determine the glass dissolution rate at each pH and temperature. As will be shown, the rate measured in an SPFt test depends on the solution flow rate. The solutions in static tests will eventually become concentrated enough to affect the dissolution rate. In both the SPFt and static test methods. a compromise is required between the need to minimize the effects of dissolved components on the dissolution rate and the need to attain solution concentrations that are high enough to analyze. In the paper, we compare the results of static leach tests and SPFT tests conducted with simple 5-component glass to confirm the equivalence of SPFT tests and static tests conducted with pH buffer solutions. Tests were conducted over the range pH values that are most relevant for waste glass disssolution in a disposal system. The glass and temperature used in the tests were selected to allow direct comparison with SPFT tests conducted previously. The ability to measure parameter values with more than one test method and an understanding of how the rate measured in each test is affected by various test parameters provides added confidence to the measured values. The dissolution rate of a simple 5-component glass was measured at pH values of 6.2, 8.3, and 9.6 and $70^{\circ}C$ using static tests and single-pass flow-through (SPFT) tests. Similar rates were measured with the two methods. However, the measured rates are about 10X higher than the rates measured previously for a glass having the same composition using an SPFT test method. Differences are attributed to effects of the solution flow rate on the glass dissolution reate and how the specific surface area of crushed glass is estimated. This comparison indicates the need to standardize the SPFT test procedure.

  • PDF

고준위 방폐장 입지 선정의 공론화 기초 연구 (Laying the Siting of High-Level Radioactive Waste in Public Opinion)

  • 이수장
    • 환경정책연구
    • /
    • 제7권4호
    • /
    • pp.105-134
    • /
    • 2008
  • 거의 20년 끌어 오던 중 저준위 방폐장 입지가 우여곡절 끝에 주민투표에 의해 경주로 결정났고, 지난 7월 산업자원부로부터 방사성 폐기시 계획을 득하여 부지 정지에 착수함으로써 본격적인 사업에 착수하였다. 그런데 이제 원자력 발전소 내와 중간저장시설에 임시로 보관하고 있는 고준위 방사성폐기물(사용후연료 포함)을 영구 처분할 수 있는 입지 선정이 시급한 과제로 대두되고 있다. 특히 현재 4개 원자력 발전소 부지 내에 저장하고 있는 방사성폐기물은 올해부터 단계적으로 포화될 것으로 예상되기 때문이다. 이에 지난 6월말 국회에서 이 문제에 대한 세미나가 있었는데 논의의 결론은 공론화를 할 수 있는 법과 제도를 마련하는 것이었다. 문제는 고준위 방폐장 입지 선정은 중 저준위에 비해 그 어려움이 비교가 되지 않을 것으로 예상된다는 것이다. 왜냐하면 미국의 경우 네바다(Nevada) 주 유카(Yucca) 산에 방폐장을 건설하려는 노력이 약 30년간 핵규제위원회(NRC), 에너지부(DOE) 및 환경청(EPA) 등 3개의 국가기관이 약 100억달러를 조사 연구에 쏟아 붓고도 아직 완전히 해결되지 않고 있기 때문이다. 우리나라는 2004년도 12월에 제253차 원자력위원회에서 사용후연료 정책은 충분한 논의를 거쳐 국민적 공감대 하에서 추진하기로 의결한 바 있다. 우리나라에서는 이 문제의 소관부처가 산업자원부인데, 실제로 이를 다룰 법 규정이 거의 전무하다는 것이다. 원자력법에 이에 대한 규정이 있으나 고준위방사성폐기물의 처리 처분의 관리대책은 제외되어 있다(동 법 제84조의 2). 그러나 금년 초부터는 에너지기본법에 따른 국가에너지위원회 산하의 갈등관리전문위원회와 사용후연료공론화 실무위원회(T/F)에서 사용후연료의 공론화와 최종관리방안 등에 대하여 본격적인 검토와 논의를 벌이고 있는 것은 다행이다. 또한 정부에서도 이에 대한 필요성을 인식하여 방사성폐기물 관리와 관련한 불합리한 제도를 개선하고 관리전담기구 운영 등을 명시한 방사성폐기물관리법 제정을 추진하고 있다. 법 제정 원칙은 하향적(top-down)이나 상향적(bottom-up)방식인 아닌 협상을 통한 합의형성식(consensus-building)이 되어야 한다는 것이다. 우호적 또는 협력적 방법으로 결정과정을 진행시켜야 한다는 것이다. 이러한 합의형성식 의사결정과정을 정착시키기 위해서는 다음과 같은 명제가 요청된다. 명제 I : 정부 결정의 하향적 강요를 지양하고, 지역공동체는 자율성 또는 거부권을 가져야 한다. 명제 II : 정부는 지역공동체를 위해서(for)가 아니라 함께(with) 일해야 한다. 명제 III : 지역공동체는 악영향에 대해 보상을 받아야 한다. 명제 IV : 지역공동체는 주어진 여러 기술적 대안과 영향 관리조치 가운데서 그들이 수용할 수 있는 대안을 선택할 권리를 가져야 한다. 명제 V : 시설이 건강상 안전하고 환경적으로 건전하게 입지될 수 있는 것을 보여 줄 수 없다면 어떠한 지역공동체도 시설 수용을 거부할 수 있다. 지역공동체와 정부가 고준위방폐장 입지에 대하여 합의를 형성하기 위해서는 정부의 명령적 하향식이나 거의 억지적인 주민들의 상향식이 합의 형성에 아무런 도움이 되지 않았다는 것을 많이 보아 왔다. 따라서 앞에서 살펴본 여러 방법이나 그 중의 하나를 사용할 수밖에 없을 것이다. 다시 말해 발산적(divergent) 사고가 아닌 수렴적(convergent) 사고가 절대적으로 요청된다는 것이다. 여기서 본 연구자는 공론화는 수렴적 사고를 기반으로 해야 할 당위성을 주장하고자 한다. 수렴적 사고를 통해 공론화의 장에서 합의되어야 할, 즉 공론화에 의해 결정되어야 할 몇 가지 중요한 다음과 같은 사항을 제시하기로 한다. 1. 지역공동체와 협상할 것인가의 결정 2. 입지 선정 시 지역공동체의 역할 결정 3. 정부의 부지 선정 전략의 결정 4. 협상할 유인 창출 5. 협상 당사자 결정 6. 지역공동체의 대표자 결정 7. 협상 의제 선정 8. 협상 기본원칙 설정 9. 정보와 전문가에 대한 지역공동체의 접근성의 담보 10. 신뢰 구축 11. 조정자의 활용 이상의 내용을 담은 가칭 '환경갈등유발시설입지에 관한 절차법'의 제정이 필요할 것이다.

  • PDF