• Title/Summary/Keyword: yields of tomato

Search Result 41, Processing Time 0.023 seconds

Appropriate Each Irrigation Quantity in Irrigation System Controlled by Drainage Level Sensor for Perlite Bag Culture of Tomato (배액전극제어법을 이용한 토마토 펄라이트 자루재배시 일회급액량 구명)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Sang-Don;Kim, Young-Shik
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2011
  • This research was conducted to investigate the effects of irrigation quantity in irrigation management system controlled by drainage level sensors for perlite bag culture on the growth and yields of tomatoes during different growth stages. Tomato plants were irrigated with four selected methods; supplying small quantity (~70 mL) during entire growth (S-S), large quantity (~145 mL) during entire growth (L-L), small quantity before harvesting the first cluster fruits and large quantity after harvesting (S-L), and large quantity until harvesting the first cluster fruits and small quantity after harvesting (L-S). The irrigation quantity supplied in each time was gradually adjusted along with the ratios as the tomato crop grew during different growth stages. The growth of the tomato plants was unstable and slow during the entire cropping period when the plant was irrigated by small or large quantities (S-S or L-L). In L-S treatment, the growth phase of the tomato was changed from vegetative to generative growth on the basis of the plant development index when each irrigation quantity was changed. The L-S treatment exhibited the largest root volume and yields with stable drainage ratios. Therefore, the optimum irrigation quantity was determined as 145 mL before harvesting the first cluster fruits and 70 mL after harvesting.

Effect of Recycled Coir Organic Substrates on Vegetable Crop Growth (코이어배지의 재활용이 채소 작물의 생육에 미치는 영향)

  • Lee, Gyu-Bin;Park, Eun-Ji;Park, Young-Hoon;Yeo, Kyung-Hwan;Rhee, Han-Cheol;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1077-1085
    • /
    • 2016
  • The present study was investigated the effect of recycled coir organic substrates on the growth of different vegetable crops. The recycled coir had better physical and chemical properties than the new coir. The growth of tomato plant was better on the coir substrate that had been used for 2 years than that on the new coir substrate. The average number of tomato fruits was 108 on the new coir substrate, while it was 179 and 165 on the coir substrate used for 1 and 2 years, respectively. The growth of cherry tomato plant was also better on the coir substrate used for 2 years than that on the new coir substrate. The average number of cherry tomato fruits was 43 on the new coir substrate, while it was 206 and 164 on the coir substrate used for 1 and 2 years, respectively. The growth of brussel sprout was better on the coir substrate used for 3 years than that on the new coir substrate and the average number of brussel sprout leaves was 26.8 on the new coir substrate, while it was 34.3 on the coir substrate used for 3 years. The growth of Korean cabbage improved on the coir substrate used for 1 years compared to the new coir substrate and the number of leaves was 15.1 on the new coir substrate, while it was 24.3 on the coir substrate used for 1 year. Thus, used coir can be recycled to improve vegetable yields compared to using new coirs.

Effects of Root-knot Nematodes, Meloidogyne hapla, M. incognita, M. arenaria and M. javanica on Growth and Yield of Tomato (토마토에 대한 뿌리혹선충의 주요 종별 피해정도)

  • Cho H. J.;Kim C. H.;Park J. S.;Jeoung M. G.
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.164-167
    • /
    • 1987
  • The effects of infection severity of susceptible tomato varieties, Rutgers and Boksu 2, by root-knot nematode, meloidogyne hapla, M. arenaria or M. javanica on plant growths and tomato yields were investigated. The inoculum levels of each nematode species were 0, 1,000 and 10,000 nematodes per 42cm diam. pot. Tomato yield was reduced by the nematode infection. Severity of infection was on the decreasing order of M. javanica, M. incognita, M. arenaria, M. hapla, ranging from $80\%$ by M. javanica to only $7\%$ by M. hapla. Yield reduction by infection of M. hapla was more prominent in Boksu 2 than in Rutgers. However the results were vice versa for the other nematode species, The top fresh-weight of Rutgers inoculated with 10,000 nematodes was greater than root weight, regardless of the nematode species, whereas plant height and top fresh weight decreased with increasing root weight when inoculated with inoculum density of 1,000/pot.

  • PDF

Mycorrhizal Root Infection and Growth of Cucumber and Tomato Plants by the Inoculated with Glomus sp. In solid Medium Culture (균근균 Glomus sp. 접종에 따른 고형배지경 오이와 방울토마토의 균근 형성과 생육)

  • Cho, Ja-Yong;Kim, Young-Ju;Jin, Seo-Young;Kang, Sung-Gu;Kim, Hong-Lim;Sohn, Bo-Kyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.341-349
    • /
    • 2004
  • This study was conducted to compare the effects of arbuscular mycorrhizal fungi (AMF) on the growth and fruit yield of hydroponically grown cucumber and tomato plants in solid medium culture. Mycorrhizal fungus Glomus sp. was collected from plastic film house soils of cucumber and tomato and inoculated to the experimental crops at the time of seeding and transplanting. Root infection of cucumber and tomato plants by AMF was more significantly increased when the AMF was inoculated at seeding stage than at transplanting stage. In the infected roots of cucumber and tomato, mycorrhizal hyphae was easily observed but vesicle and arbuscule were rare. Overall plant growth was increased with AMF inoculation and the growth was higher when AMF was inoculated at seeding stage. Fresh weight of each fruit of cucumber and tomato and sugar content in tomato fruits were significantly increased with AMF inoculation at seeding stage. The AMF inoculation also increased fruit yields of cucumber and tomato.

Appropriate Daily Last Irrigation Time in Coir Bag Culture for Tomato (토마토 코이어 자루재배시 적정 급액마감시각 구명)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Moon-Hang;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.12-19
    • /
    • 2012
  • This research was performed to determine the appropriate daily last irrigation time to enhance the plant growth and the water and fertilizer use efficiencies in coir bag culture for tomato plant. The time to finish the daily irrigation was set by 1, 2, 3 and 4 hours before the sunset. The water content in the substrate was greatly affected by the last irrigation time. The earlier the last time, the greater the daily fluctuation of water contents in the substrate. The daily irrigation times were not affected by using irrigation management system controlled by drainage electrodes or the physiochemical properties of coir. The growth characteristics were not significantly different among the treatments. The highest marketable yields were obtained in the treatment finishing two hours before sunset, and the lowest yields were obtained in the the treatment finishing 4 hours before sunset. Based on the result from surveying quantity of irrigated water for 128 days of the experiment period, the water and fertilizer use efficiencies were lowest in the treatment finishing 4 hours before sunset, and the highest in the treatment finishing 2 hours before sunset. In terms of plant growth, yields, water and fertilizer use efficiencies, 2 hours before sunset treatment was determined as the most economical and desirable irrigation schedule.

Effects of Deficit Irrigation on the Total Soluble Solids and Fruit Yields of Fresh Tomato (관수량 조절이 시설 토마토 과실의 당도와 수량에 미치는 영향)

  • Kang, Nam-Jun;Cho, Myeong-Whan;Kweon, Joon-Kook;Rhee, Han-Chul;Choi, Young-Hah
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.335-339
    • /
    • 2006
  • Effects of deficit irrigation by different soil moisture-based water potential on total soluble solids and fruit yields in fresh tomato were investigated. Amount of irrigation was saved about 11%, 25% and 41% at -20 kPa,-30 kPa and -40 kPa treatment compared to the -15 kPa treatment as a standard practice, respectively. Deficit irrigation with -30 kPa and -40 kPa treatment significantly increased total soluble solids by 11% and 24% at first truss compared to the -15 kPa treatment, with no significant loss of yield, respectively. However, deficit irrigation with -30 kPa and -40 kPa treatment significantly increased total soluble solids at second and third truss, but resulted in substantial yield loss compared to the standard practice. Total fruit yields at -30 kPa and -40 kPa treatment was decreased by 16.5% and 25.1% compared to the -15 kPa treatment. However, marketable fruits based on fruit size (150$\sim$250g) was increased by 27.8% at -30 kPa treatment compared to the -15 kPa treatment.

Influence of Continuous Application of Low-concentration Swine Slurry on Soil Properties and Yield of Tomato and Cucumber in a Greenhouse (시설하우스에서 저농도 돈분 액비의 연용이 토양 및 토마토와 오이의 수량에 미치는 영향)

  • Seo, Young-Ho;Ahn, Moon-Sub;Kang, An-Seok;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.773-778
    • /
    • 2011
  • Long-term continuous application of livestock by-products to agricultural land may adversely affect the soil characteristics and the crop yield. Five year term study from 2007 was carried out to assess the effects of repeated application of low-concentration swine slurry on soil chemical properties including phosphate and heavy metal contents and yield of tomato (Lycopersicon esculentum) and cucumber (Cucumis sativus L.) in a greenhouse. Treatments were conventional chemical fertilizers and three application rates of low-concentration swine slurry (Slurry composting and biofiltration, SCB): 50%, 100%, and 200% of recommended nitrogen fertilization. For swine slurry treatment of 50% nitrogen, deficient nitrogen was supplemented with urea fertilizer. The soil phosphorus and heavy metal contents after five year continuous application of swine slurry were not significantly higher than those of chemical fertilizer use. Repeated application of the swine slurry alone for five years resulted in relatively high soil exchangeable potassium and sodium compared with chemical fertilizer treatment. Contents of heavy metals in leaves of tomato and cucumber did not show significant difference among treatments. Yields of the crops for the swine slurry were not significantly different from that of chemical fertilizer. The results imply that continuous application of the swine slurry may not influence levels of soil phosphate and trace elements in greenhouse soils but could accumulate potassium and sodium in the soil.

Growth Promotion in Red Pepper and Tomato Seedlings by Fermented Liquid Fertilizers and Elution of Mineral Nutrients by Extraction Methods (발효액비별 고추와 토마토 육묘 생육 촉진 및 추출방법별 무기양분 용출)

  • Jang, Se Ji;Kuk, Yong In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.130-141
    • /
    • 2020
  • The purpose of this study was to determine which fermented liquid fertilizer and application method yields the greatest amount of growth in red pepper (Capsicum annuum L.) and tomato (Lycopersicon esculentum MILL.) plants. Additionally, we investigated which extraction methods produce the most effective fertilizer with the highest levels of mineral nutrients. The liquid fertilizers used in this study were made from fish, bone and fish meal, red pepper leaves, and oil cake, and were extracted using fermentation or water and boiled water. In tomato plants, foliar-application of fermented fertilizer is known to promote more growth than application by drenching, regardless of the number of treatments (once or twice). In our studies, however, drenching with fertilizer promoted growth more effectively than foliar-application in red pepper plants. Studies in both tomato and red pepper have shown that the number of treatments does not significantly alter growth. Liquid fertilizers produced by a fermentation-extraction method promoted greater levels of growth in tomato compared to red pepper, and growth was greater when fertilizers were applied 20 (rather than 40) days post-sowing. Red pepper and tomato shoot fresh weight were affected more by fermented fertilizers than plant height 20 days post-sowing. In red pepper, we observed increased shoot fresh weight when using fermented liquid fertilizers with concentrations of 0.1% or greater. Tomato shoot fresh weight increased similarly in response to fermented fertilizer treatments at the same concentration levels, except those derived from fish. Fermented fish liquid fertilizer was only effective in increasing tomato shoot fresh weight in concentrations exceeding 1%. Red pepper and tomato shoot fresh weight also increased more than plant height in our studies using fermentation liquid fertilizers at 40 days after sowing. Red pepper fresh weight increased with application of bone + fish meal, red pepper leaf, and oil cake fertilizers at concentrations of 0.1%, but not with fish liquid fertilizer in concentrations under 0.5%. Shoot fresh weight in tomato increased with all liquid fertilizers. Growth in red pepper and tomato may be influenced by different kinds of fertilizers due to combinations of macro- and micro-nutrients, or specific macro-nutrients such as nitrogen, phosphoric acid, and potassium. The mineral nutrients found in fish, bone and fish meal, red pepper leaves, and oil cake were not easily extracted by fermentation; thus, liquid fertilizers made using water and boiled water methods more effectively promoted growth in red pepper and tomato due to the larger amounts of macronutrients eluted.

Impact of Continuous Application of Swine Slurry on Changes in Soil Properties and Yields of Tomatoes and Cucumbers in a Greenhouse (돈분 액비의 연용이 시설하우스 토양 및 토마토와 오이 수량에 미치는 영향 평가)

  • Seo, Young-Ho;Cho, Byoung-Ouk;Choi, Jun-Keun;Kang, An-Seok;Jeong, Byeong-Chan;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.446-452
    • /
    • 2010
  • Five year term study from 2002 to 2006 was carried out to examine the effects of continuous long-term application of swine liquid manure on soil chemical properties including heavy metal contents and yield of tomato (Lycopersicon esculentum) and cucumber (Cucumis sativus L.) in a greenhouse. Treatments were conventional chemical fertilizers and three types of swine slurry; Slurry composting and biofiltration (SCB), Thermophilic aerobic oxidation (TAO), and Bio-mineral water (BMW). Total nitrogen level of the SCB, TAO, and BMW was 0.47%, 0.09%, and less than 0.01%, respectively. The heavy metal contents of the three liquid manures were much lower than the Korean regulation level. The soil phosphorus, potassium, and heavy metal contents after five year continuous application of swine slurry were not significantly higher than those of chemical fertilizer use. Contents of heavy metals in leaves of the crops did not show significant difference among treatments. The levels of copper and zinc, plant essential elements, in leaves were in the range of optimum plant growth. Yields of tomato and cucumber for swine liquid manures were not significantly different from that of chemical fertilizer. The results implied that the three types of swine slurry may not deteriorate soil chemical properties including phosphate and trace elements in greenhouse soils when they are applied as a basal fertilization at a recommended nitrogen rate based on soil testing.

Biochemical Methane Potential of Agricultural Byproduct in Greenhouse Vegetable Crops (국내 주요 시설채소 부산물의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1252-1257
    • /
    • 2011
  • Number of crop residues generated at large amount in agriculture can be utilized as substrate in methane production by anaerobic digestion. Greenhouse vegetable crop cultivation that adopting intensive agricultural system require the heating energy during winter season, meanwhile produce waste biomass source for the methane production. The purpose of this study was to investigate the methane production potential of greenhouse vegetable crop residues and to estimate material and energy yield in greenhouse system. Cucumber, tomato, and paprika as greenhouse vegetable crop were used in this study. Fallen fruit, leaf, and stem residues were collected at harvesting period from the farmhouses (Anseong, Gyeonggi, Korea) adopting an intensive greenhouse cultivation system. Also the amount of fallen vegetables and plant residues, and planting density of each vegetable crop were investigated. Chemical properties of vegetable waste biomass were determined, and theoretical methane potentials were calculated using Buswell's formula from the element analysis data. Also, BMP (Biochemical methane potential) assay was carried out for each vegetable waste biomass in mesophilic temperature ($38^{\circ}C$). Theoretical methane potential ($B_{th}$) and Ultimate methane potential ($B_u$) off stem, leaf, and fallen fruit in vegetable residues showed the range of $0.352{\sim}0.485Nm^3\;kg^{-1}VS_{added}$ and $0.136{\sim}0.354Nm^3\;kg^{-1}VS_{added}$ respectively. The biomass yields of residues of tomato, cucumber, and paprika were 28.3, 30.5, and $21.5Mg\;ha^{-1}$ respectively. The methane yields of tomato, cucumber, and paprika residues showed 645.0, 782.5, and $686.8Nm^3\;ha^{-1}$. Methane yield ($Nm^3\;ha^{-1}$) of crop residue may be highly influenced by biomass yield which is mainly affected by planting density.