• Title/Summary/Keyword: yield.

Search Result 22,366, Processing Time 0.05 seconds

Agricultural Characteristics of Inbred Korean Waxy Corn Lines and Relationships (국내 찰옥수수 계통의 농업형질 특성 및 연관 연구)

  • Jun Young Ha;Young Sam Go;Jae Han Son;Beom Young Son;Tae Wook Jung;Hwan Hee Bae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.265-273
    • /
    • 2022
  • Waxy corn (Zea mays L.), which contains homozygous mutant alleles for the waxy1 (wx1) gene, is widely consumed as a snack food in Asia. This study evaluated sixteen agronomic characteristics of inbred Korean waxy corn lines to aid development of high-quality waxy corn cultivars. The plant materials studied were 177 inbred waxy corn lines developed by the National Institute of Crop Science, Rural Development Administration, Republic of Korea. For the tested lines, days to tasseling and silking averaged 77.69±2.22 days (with a range of 56-97 days), and 81.12±7.56 days (66-99 days), respectively. Plant length ranged from 88 to 237 cm (averaged 164.88±22.67 cm), ear length averaged 11.75±2.52 cm (5.0-18.5 cm), and ear width averaged 2.94±0.68 cm (1.4-4.5 cm). The number of rows on each ear of corn averaged 12.22±2.22 (7-32 rows) and the kernel number averaged 24.30±4.22 (9-37 kernels) per row. The crude protein content was 12.05±1.53% (8.90-21.80%) and total starch content was 69.27±5.74% (49.5-83.9%). Principal component analysis revealed that ear width, grain length, ear length, days to tasseling, days to silking, percentage of ear setting height, and total starch are features that allow distinction between the 177 waxy inbred corn lines. Hierarchical cluster analysis identified twelve waxy inbred lines that produce tall plants and have a short silking period. These lines may improve yield among quickly growing corn varieties.

Integrated Mechanization System on Polyethylene Film Mulching Culture in Sesame (참깨의 비닐피복 기계화 일관작업 체계 연구)

  • Kang, Chul-Whan;Lee, Byoung-Kyu;Ahn, Byoung-Ok;Park, Choong-Bum;Roh, Jae-Hwan;Lee, Seong-Woo;Lee, Seung-Tack;Hong, Jong-Tae;Lee, Sun-Ho;Kim, Seok-Hyeon;Lee, Sang-Chuel;Kim, Wan-Suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.5
    • /
    • pp.489-496
    • /
    • 1997
  • This study was carried out to develop and investigate integrated mechanization system on polyethylene(P.E.) film mulching culture in sesame. Field trials were carried out to develop optimum mechanics for each step of manual operation in sesame culture and demonstrated those developed mechanics of sesame dibbling vinyl mulcher, sesame binder, sesame thresher and sesame grader at the farmer, s field of Hwasong (Kyunggi-do) in 1994 and 1995. Newly developed sesame dibbling vinyl mulcher brought saving manpower 280 hrs /ha for sowing and P.E. film mulching with it's 98% of labour saving for the harvesting operation of sesame. Sesame Binder showed 93% labour saving for cutting and binding with only 22 hrs /ha compared to 330 hrs /ha that of conventional. Sesame thresher was appeared to have 85% effects of labour saving for threshing with completely dry sesame bundles at one time by 23 hrs /ha compared to 151 hrs /ha that of conventional. Sesame grader was appeared to have 72% effects for sesame grain grading with 12 hrs /ha compared to that of conventional 54 hrs /ha. Grain yield of integrated mechanization culture system showed 6% higher than that of coventional. Integrated mechanization culture system (sesame dibbling vinyl mulcher + sesame binder + sesame thresher + sasame grader) showed 62% of labour saving effects through whole steps of sesame culture by 472 hrs /ha compared to that of conventional 1, 230 hrs /ha.

  • PDF

Deep Learning Approaches for Accurate Weed Area Assessment in Maize Fields (딥러닝 기반 옥수수 포장의 잡초 면적 평가)

  • Hyeok-jin Bak;Dongwon Kwon;Wan-Gyu Sang;Ho-young Ban;Sungyul Chang;Jae-Kyeong Baek;Yun-Ho Lee;Woo-jin Im;Myung-chul Seo;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.17-27
    • /
    • 2023
  • Weeds are one of the factors that reduce crop yield through nutrient and photosynthetic competition. Quantification of weed density are an important part of making accurate decisions for precision weeding. In this study, we tried to quantify the density of weeds in images of maize fields taken by unmanned aerial vehicle (UAV). UAV image data collection took place in maize fields from May 17 to June 4, 2021, when maize was in its early growth stage. UAV images were labeled with pixels from maize and those without and the cropped to be used as the input data of the semantic segmentation network for the maize detection model. We trained a model to separate maize from background using the deep learning segmentation networks DeepLabV3+, U-Net, Linknet, and FPN. All four models showed pixel accuracy of 0.97, and the mIOU score was 0.76 and 0.74 in DeepLabV3+ and U-Net, higher than 0.69 for Linknet and FPN. Weed density was calculated as the difference between the green area classified as ExGR (Excess green-Excess red) and the maize area predicted by the model. Each image evaluated for weed density was recombined to quantify and visualize the distribution and density of weeds in a wide range of maize fields. We propose a method to quantify weed density for accurate weeding by effectively separating weeds, maize, and background from UAV images of maize fields.

Cone Characteristics and Seed Quality among Harvest Times in the Clonal Seed Orchard of Larix kaempferi (낙엽송 클론 채종원에서 구과 채취시기에 따른 구과특성 및 종자품질)

  • Ye-Ji Kim;Da-Eun Gu;Gyehong Cho;Heeyoon Choi;Yeongkon Woo;Chae-Bin Lee;Sungryul Ryu;Hye-Joon Joo;Kyu-Suk Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.352-362
    • /
    • 2023
  • Harvest time is one of the most important determining factors of seed quality, especially for species that produce seeds over irregular and long-term periods, such as Larix kaempferi. A cone collection plan must be established to increase seed production efficiency and stable mass production. We investigated seed qualities such as seed efficiency, germination rate, and T50 (germination speed), with 7 or 8 cone collection times at a clonal seed orchard of L. kaempferi in Chungju between 2021 and 2022. A multivariate analysis was then performed for the collected data. In early August, decreases in the moisture contents and browning of cones were observed. These were followed by a decrease in germination rate, with a peak at the end of September, but no clear trend was observed. The later the cones were harvested, the better the seed vigor (T50). However, the seed yield and efficiency decreased owing to increases in seed scattering and the number of insect-damaged seeds. As a result, the optimal time of seed harvest for the seed orchard was in early August. To produce uniform seedlings, insect damage must be reduced through timely control and harvest cones in early September. This shows that the degree of browning and moisture content of cones can be used as indicators of the timing of cone collection in L. kaempferi seed orchards.

Views on Life and Humanity in Daesoon Thought (대순사상의 생명관과 인생관)

  • Choi, Chi-bong
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.33
    • /
    • pp.319-349
    • /
    • 2019
  • This study aims to elucidate the origin and yield of life and its characteristics and purpose in Daesoon Thought. Thereby, Taegeuk (the Great Ultimate) and Sangje (the Supreme God) have been deemed the source and ontology of life. The structure of each living creature is explained through reason (理), energy (氣) and spirit (神). In addition, through vital reason and living energy, the purpose of life makes the realization of the benevolent characteristics of life possible through the mind of Sangje. This line of research is unique among currently available research views of life as it perceives the spirit to be an ontological entity with functions and interactive engagement. By way of contrast, prior research suggests that spirit is life itself and includes it in the category of life and death. The Daesoon view of life is unique in that it is somewhat influenced by ontology and developmental theories from Confucianism, yet the concept of divine beings suggests a humanistic Sangje, who presides over the Great Ultimate. The realization of reason in this model is rather thought-provoking. Humans, just like other living things, are born with vital essence and function and interact as a main source to preside over the innate spirits inside themselves. Humans take responsibility for a certain sphere in the Three Realms that make up the world. They are also recognized as a significant feature in the world. Such an idea in Daesoon Thought depicts that 'the enshrinement of spirit into human being (神封於人),' follows Heaven and Earth. This is done to rectify humans in order to meet the needs of the universe and ultimately establish the era of the enshrinement of spirits into human beings. As for humanity, this possibility exists because of the spirits contained within their inner-selves. When cultivating oneself, humans and outer spirits actively interact with each other. This is likely to cause changes in a human's constitution and characteristics. In the end, one can be enshrined with corresponding divine beings according to one's degree of cultivation. Humans are born through the command of Sangje and the accomplishments of their ancestors as well as the energy of the universe. Present day humans encounter the era of human nobility and the era of humankind's divine salvation. Thereby, the purpose of human life is to contribute to the universe. To achieve this goal, the most important thing is to wholly realize that one's nature and reason were endowed by Heaven, which emerged from virtuous conduct in society. This is also akin to the movement of reason in Jeungsanist Thought. Sangsaeng (mutual beneficence) among oneself and others and between human beings and divine beings can be completed through the resolution of grievances for mutual beneficence and the grateful reciprocation of favors for mutual beneficence. If one accomplishes the perfected state of one's own nature and reveals it wholly, then one will be fully able to interact with spirits and reach the state of the human nobility.

Optimum Strength and NH4+:NO3- Ratio of Nutrient Solution for Romaine Lettuce Cultivated in a Home Hydroponic System (가정용 수경재배기에서 재배한 로메인상추의 생육에 적합한 양액 강도와 NH4+:NO3-의 비율)

  • Kyungdeok Noh;Byoung Ryong Jeong
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.97-105
    • /
    • 2023
  • Concentration of nitrogen, one of the major elements, and ratio of two nitrogen forms (NH4+ and NO3-) in the nutrient solution affect the quality and food safety of fresh vegetable produce. This study was conducted to find an appropriate strength and NH4+:NO3- ratio of a nutrient solution for growth and development of a Romaine lettuce (Lactuca sativa L. var. longiflora) 'Caesar Green', a representative leafy vegetable, grown in a home hydroponic system. In the first experiment, plants were grown using three types of nutrient solution: A commercial nutrient solution (Peters) and two strengths (GNU1 and GNU2) of a multipurpose nutrient solution (GNU solution) developed in a Gyeongsang National University lab. Plants grown with the GNU1 and GNU2 had greater shoot length, leaf length and width, and biomass yield than Peters. On the other hand, the root hairs of plants grown with Peters were short and dark in color. Tissue NH4+ content in the Peters was higher than that of the GNU1 and GNU2. The higher contents of NH4+ in this solution may have caused ammonium toxicity. In the second experiment, eight treatment solutions, combining GNU1 and GNU2 solutions with four ratios of NO3- :NH4+ named as 1, 2, 3 and 4 were used. Both experiments showed more growth in the GNU2 group, which had a relatively low ionic strength of the nutrient solution. The growth of Romaine lettuce showed the greatest fresh weight along with low tissue NO3- content in the GNU2-2. This was more advantageous in terms of food safety in that it suppressed the accumulation of surplus NO3- in tissues due to the low ionic trength of the GNU2 subgroup. In addition, this is preferable in that it can reduce the absolute amount of the input of inorganic nutrients to the nutrient solution.

Influence of a chemical additive on the reduction of highly concentrated ammonium nitrogen(NH4+-N) in pig wastewater (양돈 폐수로부터 고농도 암모니아성 질소의 감소를 위한 화학적 첨가제의 영향)

  • Su Ho Bae;Eun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.267-274
    • /
    • 2022
  • Excess nitrogen (N) flowing from livestock manure to water systems poses a serious threat to the natural environment. Thus, livestock wastewater management has recently drawn attention to this related field. This study first attempted to obtain the optimal conditions for the further volatilization of NH3 gas generated from pig wastewater by adjusting the amount of injected magnesia (MgO). At 0.8 wt.% of MgO (by pig wastewater weight), the volatility rate of NH3 increased to 75.5% after a day of aeration compared to untreated samples (pig wastewater itself). This phenomenon was attributed to increases in the pH of pig wastewater as MgO dissolved in it, increasing the volatilization efficiency of NH3. The initial pH of pig wastewater was 8.4, and the pH was 9.2 when MgO was added up to 0.8 wt.%. Second, the residual ammonia nitrogen (NH4+-N) in pig wastewater was removed by precipitation in the form of struvite (NH4MgPO4·6H2O) by adjusting the pH after adding MgO and H3PO4. Struvite produced in the pig wastewater was identified by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analysis. White precipitates began to form at pH 6, and the higher the pH, the lower the concentration of NH4+-N in pig wastewater. Of the total 86.1% of NH4+-N removed, 62.4% was achieved at pH 6, which was the highest removal rate. Furthermore, how struvite changes with pH was investigated. Under conditions of pH 11 or higher, the synthesized struvite was completely decomposed. The yield of struvite in the precipitate was determined to be between 68% and 84% through a variety of analyses.

Optimized Production through Enlargement Comparison Grown in Various Mixed Soils using Tubers of In vitro Pinellia triparita(Blume) Schott (기내증식 대반하의 상토 조성별 괴경 비대 조건 비교를 통한 최적 배양묘 생산 조건 확립)

  • Lee, Ka Youn;Min, Ji Yun;Kim, Mi Sun;Moon, Byeong Cheol;Kang, Young Min
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.33-43
    • /
    • 2016
  • Pinellia tripartita(Blume) Schott is a herbaceous perennial plant belonging to the Araceae and distributed on Asia including of Korea, Japan, and China. P. tripartita is often used for gardening but has not been developed mass-breeding methods. In this study, we compared the tuber growth in different combinations of mixed soils used six compositions. Tubers used to study was cultured in vitro and divided into two groups. Type I was diameter more than 1cm and the group of Type II was diameter below than 1cm. Enlargement of tubers and growth of aerial parts were measuring the plant height, number of fresh leaves and dead leaves, number of bullets, tuber size, and fresh / dry weight. The size/weight and numbers of tubers from the mixed soil B (coir 68.0%, peat moss 14.7%, perlite 3.0%, vermiculite 7.0% and zeolite 7.0%) were the best grown up for eight weeks. In case of Type I, GI (Growth index) of tuber size and weight were 45% and 101%, respectively. The difference of growth was doubled compared to the bad growth treatment as the mixed soil E(Coir 14.3%, peat moss 14.3%, perlite 42.9%, vermiculite 14.3%, and zeolite 14.3%). These results could be used as the basic information for the similar experimental design for the P. ternata.

Molecular Breeding of Tobacco Plants Resistant to TMV and PVY (분자생물학적 TMV 및 PVY 저항성 연초 육종)

  • E.K. Pank;Kim, Y.H.;Kim, S.S.;Park, S.W.;Lee, C.H.;K.H.Paik
    • Proceedings of the Korean Society of Tobacco Science Conference
    • /
    • 1997.10a
    • /
    • pp.134-152
    • /
    • 1997
  • Plant viruses of tobacco including tobacco mosaic virus (TMV) and potato virus Y (PVY) cause severe economic losses in leaf-tobacco production. Cultural practices do not provide sufficient control against the viruses. Use of valuable resistant cultivars is most recommendable for the control of the viruses. However, conventional breeding programs are not always proper for the development of virus-resistant plants mostly owing to the frequent lack of genetic sources and introduction of their unwanted properties. Therefore, we tried to develop virus-resistant tobacco plants by transforming commercial tobacco cultivars, NC 82 and Burley 21, with coat protein (CP) or replicase (Nlb) genes of TMV and PVY necrosis strain (PVY-VN) with or without untranslated region (UTR) and with or without mutation. Each cDNA was cloned and inserted in plant expression vectors with 1 or 2 CaMV 35S promotors, and introduced into tobacco leaf tissues by Agrobacterium tumefaciens LBA 4404. Plants were regenerated in kanamycin-containing MS media. Regenerated plants were tested for resistance to TMV and PVY In these studies, we could obtain a TMV-resistant transgenic line transformed with TMV CP and 6 genetic lines with PVY-VN cDNAs out of 8 CP and replicase genes. In this presentation, resistance rates, verification of gene introduction in resistant plants, stability of resistance through generations, characteristics of viral multiplication and translocation in resistant plants, and resistance responses relative to inoculum potential and to various PVY strains will be shown. Yield and quality of leaf tobacco of a promising resistant tobacco line will be presented.

  • PDF

Effects of Vanadate Solution Property on the Precipitation of Ammonium (Meta, Poly)Vanadate (바나데이트 수용액 특성이 암모늄(메타, 폴리)바나데이트 침전에 미치는 영향)

  • Ho-Sung Yoon;Seo Jin Heo;Yujin Park;Rina Kim;Chul-Joo Kim;Kyeong Woo Chung;Hong In Kim
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • Good control of the solution pH and temperature is required to recover vanadium from the water leaching solution of vanadium ore after sodium roasting. However, such adjustments could lead to aluminum-vanadium and sodium-vanadium co-precipitation, which greatly affects the efficiency of vanadium recovery. In this study, a process that can increase the efficiency of vanadium recovery as ammonium metavanadate [NH4VO3] and ammonium polyvanadate [(NH4)2V6O16·H2O] was investigated by examining the characteristics of vanadium-containing aqueous solutions during precipitation. The aluminum content of vanadium-containing water leaching solutions has a great effect on the loss of vanadium when the pH of the aqueous solution is adjusted to 9. Therefore, a process to minimize aluminum leaching is also required. In this study, ~99% or more of vanadium present in vanadium-containing aqueous solutions was precipitated and recovered as NH4VO3 by adding 3 equivalents of ammonium chloride relative to the vanadium content at pH 9 and room temperature. (NH4)2V6O16·H2O was precipitated from the aluminum-vanadium coprecipitates generated during the pH-adjustment of the aqueous solutions to 9 by dissolving the coprecipitate in the solutions at pH 2.5 and controlling their sodium content to 2,000 mg/L or less. Approximately, 98% or more of the available (NH4)2V6O16·H2O could be precipitated and recovered from a solution with a vanadium content of 2,200 mg/L and a sodium content of 1,875 mg/L at pH 2.5 by adding approximately 3 equivalents of ammonium chloride relative to the vanadium content at 95℃ or higher. The overall process could precipitate and recover, approximately 91% or more of the total vanadium in the water leaching solution as NH4VO3 and (NH4)2V6O16·H2O.