• Title/Summary/Keyword: yield-line method

Search Result 169, Processing Time 0.025 seconds

Effects of Seeding Method on the Winter Survival, Dry Matter Yield and Nutrient Value of Italian Ryegrass in Paddy Field (논에서 이탈리안 라이그라스의 파종방법이 월동, 건물수량 및 사료가치에 미치는 영향)

  • Kim, Meing-Jooung;Choi, Gi-Jun;Yook, Wan-Bang;Lim, Young-Chul;Yoon, Sei-Hyung;Kim, Jong-Geun;Park, Hyung-Soo;Seo, Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.4
    • /
    • pp.269-274
    • /
    • 2007
  • This experiment was conducted to determine the effect of seeding method on winter survival and dry matter yield of Italian ryegrass(Lolium multiflorum Lam. "Kospeed") in paddy field for two years. The experiment was arranged in randomized complete block design with three replications. The treatment consisted of four different seeding methods, R-LS-P(rotary-line sowing-packing), R-BS-P(rotary-broadcast seeding-packing), R-BS(rotary-broadcast seeding), R-BS-TR(rotary-broadcast seeding-trifling rotary), BS-TR(broadcast seeding-trifling rotary). The emergence ratio of broadcast was decreased by 12% and winter survival was decreased by 17% compared with line sowing. The R-BS-TR treatment which was practical seeding method of rye was decreased seeding stand ratio by 65.2% and winter survival by 6.7% compared with others seeding methods. Dry matter yield of line sowing(8,151 kg/ha) was higher than that of broadcast(6,281 kg/ha) and R-BS-P treatment was the highest DM yield as 7,166 kg/ha. There was not found significant difference among seeding method in forage quality. The results of this experiment indicated that R-BS-P(rotary-broadcast seeding-packing) was recommendable the best seeding method after harvested whole crop rice in paddy field.

Combining ability and heterosis of Korean sorghum varieties

  • Choe, Myeongeun;Ko, Jeeyeon;Song, Seokbo;Park, Changhwan;Kwak, Doyeon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.79-79
    • /
    • 2017
  • Grain Sorghum varieties grown in Korea have low productivity and are constrained by the fact that farmers' choice of improved varieties is limited. Hybrid cultivars have been demonstrated to be more productive and food security than pure line varieties. However, There's no available hybrid cultivars and never planted before in Korea. This study was, therefore, conducted to determine combining ability of Korean landrace varieties and cultivar, the level of heterosis of experimental hybrids depending on environments. Two cytoplasmic male-sterile lines were crossed with six male-fertile lines in accordance with North Carolina II mating scheme to generate 12 experimental hybrids. The hybrids were evaluated in replicated row-column alpha designs at two sites in Texas and South Korea under on-season production conditions. For each trait, general combining ability (GCA) and specific combining ability (SCA) effects were estimated using the line-tester method of analysis. Results indicated significant differences among genotypes for both grain yield potential and secondary traits. Hybrids were predominant for grain yield, and displayed up to 127% heterosis of A03017 ${\times}$ Sodamchal in Korea. Positive GCA for yield was observed for Donganme, Hwanggeumchal and Jungmo4002 in Korea. Among them Jungmo4002 and Donganme had highly positive for yield (227.90 and 84.90 kg ha-1), while it showed negative GCA for yield in College station (-40.90, -189.60 kg ha-1). ATx630 ${\times}$ Sodamchal had the greatest SCA for yield (468.10 kg/ha) in College station but at South Korea its SCA effect was -302.40 kg/ha. A similar trend was observed, followed by A03017 ${\times}$ Donganme (SCA effect = 215 kg ha-1 at College station vs. -44.20 kg ha-1 at South Korea). At South Korea the greatest positive SCA effect for grain was observed in ATx630 ${\times}$ Jungmo4002 as 322.20 kg/ha. Both GCA and SCA effects significantly interacted with site effects demonstrating the need for region adaptation of potential cultivars and test for developing Korea suitable cultivar.

  • PDF

Shear strength formula of CFST column-beam pinned connections

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.409-421
    • /
    • 2012
  • Recently, as the height of building is getting higher, the applications of CFST column for high-rise buildings have been increased. In structural system of high-rise building, The RC core and exterior concrete-filled tubular (CFST) column-beam pinned connection is one of the structural systems that support lateral load. If this structural system is used, due to the minimal CFST column thickness compared to that of the CFST column width, the local moment occurred by the eccentric distance between the column flange surface from shear bolts joints degrades the shear strength of the CFST column-beam pinned connections. This study performed a finite element analysis to investigate the shear strength under eccentric moment of the CFST column-beam pinned connections. The column's width and thickness were used as variables for the analysis. To guarantee the reliability of the finite element analysis, an actual-size specimens were fabricated and tested. The yield line theory was used to formulate an shear strength formula for the CFT column-beam pinned connection. the shear strength formula was suggested through comparison on the results of FEM analysis, test and yield lime theory, the shear strength formula was suggested.

Automatic Segmentation of Retinal Blood Vessels Based on Improved Multiscale Line Detection

  • Hou, Yanli
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.119-128
    • /
    • 2014
  • The appearance of retinal blood vessels is an important diagnostic indicator of serious disease, such as hypertension, diabetes, cardiovascular disease, and stroke. Automatic segmentation of the retinal vasculature is a primary step towards automatic assessment of the retinal blood vessel features. This paper presents an automated method for the enhancement and segmentation of blood vessels in fundus images. To decrease the influence of the optic disk, and emphasize the vessels for each retinal image, a multidirectional morphological top-hat transform with rotating structuring elements is first applied to the background homogenized retinal image. Then, an improved multiscale line detector is presented to produce a vessel response image, and yield the retinal blood vessel tree for each retinal image. Since different line detectors at varying scales have different line responses in the multiscale detector, the line detectors with longer length produce more vessel responses than the ones with shorter length; the improved multiscale detector combines all the responses at different scales by setting different weights for each scale. The methodology is evaluated on two publicly available databases, DRIVE and STARE. Experimental results demonstrate an excellent performance that approximates the average accuracy of a human observer. Moreover, the method is simple, fast, and robust to noise, so it is suitable for being integrated into a computer-assisted diagnostic system for ophthalmic disorders.

In-line (α,n) source sampling methodology for monte carlo radiation transport simulations

  • Griesheimer, David P.;Pavlou, Andrew T.;Thompson, Jason T.;Holmes, Jesse C.;Zerkle, Michael L.;Caro, Edmund;Joo, Hansem
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1199-1210
    • /
    • 2017
  • A new in-line method for sampling neutrons emitted in (${\alpha}$,n) reactions based on alpha particle source information has been developed for continuous-energy Monte Carlo simulations. The new method uses a continuous-slowing-down model coupled with (${\alpha}$,n) cross section data to precompute the expected neutron yield over the alpha particle lifetime. This eliminates the complexity and computational cost associated with explicit charged particle transport. When combined with an integrated alpha particle decay source sampling capability, the proposed method provides an efficient and accurate method for sampling (${\alpha}$,n) neutrons based solely on nuclide inventories in the problem, with no additional user input required. Results from several example calculations show that the proposed method reproduces the (${\alpha}$,n) neutron yields and energy spectra from reference experiments and calculations.

In-line Automatic defect inspection and repair method for TFT-LCD production

  • Honoki, Hideyuki;Arai, T.;Edamura, T.;Yoshimura, K.;Nakasu, N.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.286-289
    • /
    • 2007
  • We have developed an automated circuit defect inspection and repair method that can be used to improve the yield ratio of TFT-LCD. The method focuses on correcting resist patterns after the development process to ensure shape regularity. We built a prototype system and confirmed that the method is valid.

  • PDF

Ion Induced Secondary Electron Emission of MgO with Patterned Gold Line Charge Neutralization

  • Lee, Jong-Wan;Lee, Kie-Young;Kim, Hong-Gyu;Ahn, Joon-Hyung;Jung, Won-Joon;Yoon, Sean-J;Byungdu Oh
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.5 no.1
    • /
    • pp.7-10
    • /
    • 2001
  • Ion induced secondary electron emission coefficients γ of protecting layers of an AC plasma display panel(AC-PDP) have been measured. In order to solve the surface charging effect during the measurement at insulating samples like MgO, a new method with the patterned gold line charge neutralization has been introduced. The measurement was performed at the samples, MgO and MgO+MgF$_2$, which showed a great difference in the firing voltage between the two protecting layers. The γ value has been compared with the firing voltage Vf of the AC-PDP with the same protecting layer. Correct relationship between γ and Vf has been observed. Thus, the patterned gold line method has been proven to be successful for the measurement of the secondary electron emission yield at insulator sample surfaces.

  • PDF

A Study on Welding Deformation of thin plate block in PCTC (PCTC 박판 블록 용접 변형에 관한 연구)

  • Kang, Serng-Ku;Yang, Jong-Su;Kim, Ho-Kyeong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.97-97
    • /
    • 2009
  • The use of thin plate increases due to the need for light weight in large ship. Thin plate is easily distorted and has residual stress by welding heat. Therefore, the thin plate should be carefully joined to minimize the welding deformation which costs time and money for repair. For one effort to reduce welding deformation, it is very useful to predict welding deformation before welding execution. There are two methods to analyze welding deformation. One is simple linear analysis. The other is nonlinear analysis. The simple linear analysis is elastic analysis using the equivalent load method or inherent strain method from welding experiments. The nonlinear analysis is thermo-elastic analysis which gives consideration to the nonlinearity of material dependent on temperature and time, welding current, voltage, speed, sequence and constraint. In this study, the welding deformation is analyzed by using thermo-elastic method for PCTC(Pure Car and Truck Carrier) which carries cars and trucks. PCTC uses thin plates of 6mm thickness which is susceptible to welding heat. The analysis dimension is 19,200mm(length) * 13,825mm(width) * 376mm(height). MARC and MENTAT are used as pre and post processor and solver. The boundary conditions are based on the real situation in shipyard. The simulations contain convection and gravity. The material of the thin block is mild steel with $235N/mm^2$ yield strength. Its nonlinearity of conductivity, specific heat, Young's modulus and yield strength is applied in simulations. Welding is done in two pass. First pass lasts 2,100 second, then it rests for 900 second, then second pass lasts 2,100 second and then it rests for 20,000 second. The displacement at 0 sec is caused by its own weight. It is maximum 19mm at the free side. The welding line expands, shrinks during welding and finally experiences shrinkage. It results in angular distortion of thin block. Final maximum displacement, 17mm occurs around welding line. The maximum residual stress happens at the welding line, where the stress is above the yield strength. Also, the maximum equivalent plastic strain occurs at the welding line. The plastic strain of first pass is more than that of second pass. The flatness of plate in longitudinal direction is calculated in parallel with the direction of girder and compared with deformation standard of ${\pm}15mm$. Calculated value is within the standard range. The flatness of plate in transverse direction is calculated in perpendicular to the direction of girder and compared with deformation standard of ${\pm}6mm$. It satisfies the standard. Buckle of plate is calculated between each longitudinal and compared with the deformation standard. All buckle value is within the standard range of ${\pm}6mm$.

  • PDF

Analysis of Within-Field Spatial Variation of Rice Growth and Yield in Relation to Soil Properties

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.221-237
    • /
    • 2005
  • For developing the site-specific fertilizer management strategies of crop, it is essential to know the spatial variability of soil factors and to assess their influence on the variability of crop growth and yield. In 2002 and 2003 cropping seasons within-field spatial variability of rice growth and yield was examined in relation to spatial variation of soil properties in the· two paddy fields having each area of ca. $6,600m^2$ in Suwon, Korea. The fields were managed without fertilizer or with uniform application of N, P, and K fertilizer under direct-seeded and transplanted rice. Stable soil properties such as content of clay (Clay), total nitrogen (TN), organic mater (OM), silica (Si), cation exchange capacity (CEC), and rice growth and yield were measured in each grid of $10\times10m$. The two fields showed quite similar spatial variation in soil properties, showing the smallest coefficient of variation (CV) in Clay $(7.6\%)$ and the largest in Si $(21.4\%)$. The CV of plant growth parameters measured at panicle initiation (PIS) and heading stage (HD) ranged from 6 to $38\%$, and that of rice yield ranged from 11 to $21\%$. CEC, OM, TN, and available Si showed significant correlations with rice growth and yield. Multiple linear regression model with stepwise procedure selected independent variables of N fertilizer level, climate condition and soil properties, explaining as much as $76\%$ of yield variability, of which $21.6\%$ is ascribed to soil properties. Among the soil properties, the most important soil factors causing yield spatial variability was OM, followed by Si, TN, and CEC. Boundary line response of rice yield to soil properties was represented well by Mitcherich equation (negative exponential equation) that was used to quantify the influence of soil properties on rice yield, and then the Law of the Minimum was used to identify the soil limiting factor for each grid. This boundary line approach using five stable soil properties as limiting factor explained an average of about $50\%$ of the spatial yield variability. Although the determination coefficient was not very high, an advantage of the method was that it identified clearly which soil parameter was yield limiting factor and where it was distributed in the field.

Achromatic and Athermal Design of a Mobile-phone Camera Lens by Redistributing Optical First-order Quantities

  • Tae-Sik Ryu;Sung-Chan Park
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.273-282
    • /
    • 2023
  • This paper presents a new method for redistributing effectively the first orders of each lens element to achromatize and athermalize an optical system, by introducing a novel method for adjusting the slope of an achromatic and athermal line. This line is specified by connecting the housing, equivalent single lens, and aberration-corrected point on a glass map composed of available plastic and glass materials for molding. Thus, if a specific lens is replaced with the material characterized by the chromatic and thermal powers of an aberration-corrected point, we obtain an achromatic and athermal system. First, we identify two materials that yield the minimum and maximum slopes of the line from a housing coordinate, which specifies the slope range of the line spanning the available materials on a glass map. Next, redistributing the optical first orders (optical powers and paraxial ray heights) of lens elements by moving the achromatic and athermal line into the available slope range of materials yields a good achromatic and athermal design. Applying this concept to design a mobile-phone camera lens, we efficiently obtain an achromatic and athermal system with cost-effective material selection, over the specified temperature and waveband ranges.