• Title/Summary/Keyword: yield productivity

Search Result 1,294, Processing Time 0.028 seconds

Effects of Total Mixed Fermentation Feeds Based on Rice-straw and Six Forage Crops on the Productivity of Holstein Cows (청예사료작물과 볏짚 위주의 완전배합발효사료 급여가 Holstein 착유우의 생산성에 미치는 영향)

  • Lee, H. J.;Kim, H. S.;Ki, K. S.;Jeong, H. Y.;Baek, K. S.;Kim, J. S.;Cho, K. K.;Cho, J. S.;Lee, H. G.;Woo, J. H.;Choi, Y. J.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.69-78
    • /
    • 2003
  • This experiment was carried out to evaluate the value of total mixed fermentation feeds(TMFF) as completely mixed ration and to observe the effect of various kinds of TMFF on the palatability, feed intake, and milk performance in Holstein cows. The dry matter (DM) content of TMFF used in the experiment was 23.98-28.42% range, and CP, TDN, ADF and NDF were 16.2${\sim}$19.2%, 58.3-65.1%, 34.4-39.6% and 46.9${\sim}$49.9% levels, respectively. The relative feed value (RFV) in rape-, alfalfa-, grass-, oat-, corn-TMFF groups were 138.6, 133.9, 116.5, 111.8, 111.4 and 108.1, respectively. Among these groups, RFV of rye-TMFF group was lowest. Dry matter disappearance(DMD) showed 0.8${\sim}$.9% to the all kinds of TMFF groups. The pH was 3.89${\sim}$.87 and $NH_3$-N concentration was 6.93-8.66 mg/$d\ell$. The acetic acid concentration in the raw material of TMFF showed low level of 0.19${\sim}$0.57%, lactic acid showed high level of 1.17${\sim}$3.21% and butyric acid was very high as 0.03${\sim}$0.32%. Therefore, these results provide evidence that the quality of TMFF was not so bad. In the daily fresh matter intake on the alfalfa-, grass-, rape-, corn-, oats- and rye-TMFF were showed 62.85, 60.48, 58.04, 57.11, 54.61 and 45.74 kg respectively. All TMFF showed high palatability as daily dry matter intake of 1.95 to 2.90% by body weight of experimental cows. Body condition score(BCS) was gradually increased in during 60 days of the experiment term. Average daily gain(ADG) showed about 140.0${\sim}$326.7g. In alfalfa-TMFF group, the ADG was higher than in the other groups (p<0.05). Also, the increase in BCS was observed in grass-TMFF group (3.07 to 3.34) and rye-TMFF group was decreased in 3.07 to 3.34 (p<0.05). The milk yield appropriately showed a range of 16.16${\sim}$18.95 kg in all groups. Among these groups, alfalfa-TMFF group was highest(P<0.05). Average milk fat contents showed high levels of 4.06${\sim}$4.79% and the level was high in order of rape-, grass-, corn-, alfalfa-, rye- and oats-TMFF. Milk protein was highest in forage-TMFF and level of lactose in milk was approximately 4.56% in overall groups. Solid non fat(SNF) and total solid(TS) contents were 8.75% and 12.8%, respectively. However, milk composition was not significantly affected by TMFF.

Studies on the Production of Alcohol from Woods (목재(木材)를 이용(利用)한 Alcohol 생산(生産)에 관(關)한 연구(硏究))

  • Cheong, Jin Cheol
    • Journal of Korean Society of Forest Science
    • /
    • v.59 no.1
    • /
    • pp.67-91
    • /
    • 1983
  • In order to examine the alcohol production from softwoods (Pinus densiflora Sieb. et Zucc., Pinus rigida Miller, Larix leptolepis Gordon) and hardwoods (Alnus japonica Steud., Castanea crenata Sieb. et Zucc. Populus euramericana CV 214), chemical compositions were analyzed and conditions of acid hydrolysis with wood meals were established. Also strains which could remarkably decompose the cellulose were identified, and conditions of cellulase production of strains, characteristics of cellulase, and alcohol fermentation were examined. The results were summarized as follows. 1) In acid hydrolysis of wood, the high yield of reducing sugars was shown from 1.0% to 2.0% of hydrochloric acid and 2.0% of sulfuric acid. The highest yield was produced 23.4% at wood meals of Alnus japonica treated with 1.0% of hydrochloric acid. 2) The effect of raising the hydrolysis was good at $1.5kg/cm^2$, 30 times (acid/wood meal), and 45 min in treating hydrochloric acid and 30 min in treating sulfuric acid. 3) The pretreatments with concentrated sulfuric acid were more effective concentration ranged from 50% to 60% than that with hydrochloric acid and its concentration ranged from 50% to 60%. 4) The quantative analysis of sugar composition of acid hydrolysates revealed that glucose and arabinose were assayed 137.78mg and 68.24mg with Pinus densiflora, and 102.22mg and 65.89mg with Alnus janonica, respectively. Also xylose and galactose were derived. 5) The two strains of yeast which showed remarkably high alcohol productivity were Saccharomyces cerevisiae JAFM 101 and Sacch. cerevisiae var. ellipsoldeus JAFM 125. 6) The production of alcohol and the growth of yeasts were effective with the neutralization of acid hydrolysates by $CaCO_3$ and NaOH. Production of alcohol was excellent in being fermented between pH 4.5-5.5 at $30^{\circ}C$ and growth of yeasts between pH 5.0-6.0 at $24^{\circ}C$. 7) The production of alcohol was effective with the addition of 0.02% $(NH_2)_2CO$ and $(NH_4)_2SO_4$, 0.1% $KH_2PO_4$, 0.05% $MgSO_4$, 0.025% $CaCl_2$, 0.02% $MnCl_2$. Growth of yeasts was effective with 0.04-0.06% $(NH_2)_2CO$ and $(NH_4)_2SO_4$, 0.2% $K_2HPO_4$ and $K_3PO_4$, 0.05% $MgSO_4$, 0.025% $CaCl_2$, and 0.002% NaCl. 8) Among various vitamins, the production of alcohol was effective with the addition to pyridoxine and riboflavin, and the growth of yeasts with the addition to thiamin, Ca-pantothenate, and biotin. The production of aocohol was increased in 0.1% concentration of tannin and furfural, but mas decreased in above concentration. 9) In 100ml of fermented solution, alcohol and yeast were produced 2.201-2.275ml and 84-114mg for wood meals of Pinus densiflora, and 2.075-2.125ml and 104-128mg for that of Alnus japonica. Residual sugars were 0.55-0.60g and 0.60-0.65g for wood meals of Pinus densiflora and Alnus japonica, respectively, and pH varied from 3.3 to 3.6. 10) A strain of Trichoderma viride JJK. 107 was selected and identified as its having the highest activity of decomposing cellulose. 11) The highest cellulase production was good when CMCase incubated for 5 days at pH 6.0, $30^{\circ}C$ and xylanase at pH 5.0, $35^{\circ}C$. The optimum conditions of cellulase activity were proper in case of CMCase at pH 4.5, $50^{\circ}C$ and xylanase at pH 4.5, $40^{\circ}C$. 12) In fermentation with enzymatic hydrolysates, the peracetic acid treatment for delignification showed the best yields of alcohol and its ratio was effective with the addition of about 10 times. 13) The production of alcohol was excellent when wood meals and Koji of wheat bran was mixed with 10 to 8 and the 10g of wood meals of Pinus densiflora produced 2.01-2.14ml of alcohol and Alnus japonica 2.11-2.20ml.

  • PDF

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF

Microbiological and Enzymological Studies on Takju Brewing (탁주(濁酒) 양조(釀造)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.69-100
    • /
    • 1968
  • 1. In order to investigate on the microflora and enzyme activity of mold wheat 'Nuruk' , the major source of microorganisms for the brewing of Takju (a Korean Sake), two samples of Nuruk, one prepared at the College of Agriculture, Chung Nam University (S) and the other perchased at a market (T), were taken for the study. The molds, aerobic bacteria, lactic acid bacteria, and yeasts were examined and counted. The yeasts were classified by the treatment with TTC (2, 3, 5 triphenyltetrazolium chloride) agar that yields a varied shade of color. The amylase and protease activities of Nuruk were measured. The results were as the followings. a) In the Nuruk S found were: Aspergillus oryzae group, $204{\times}10^5$; Black Aspergilli, $163{\times}10^5$; Rhizogus, $20{\times}10^5$; Penicillia, $134{\times}10^5$; Areobic bacteria, $9{\times}10^6-2{\times}10^7$; Lactic acid bacteria, $3{\times}10^4$ In the Nuruk T found were: Aspergillus oryzae group, $836{\times}10^5$; Black Aspergilli, $286{\times}10^5$; Rhizopus, $623{\times}10^5$; Penicillia, $264{\times}10^5$; Aerobic bacteria, $5{\times}10^6-9{\times}10^6$; Lactic acid bacteria, $3{\times}10^4$ b) Eighty to ninety percent of the aerobic bacteria in Nuruk S appeared to belong to Bacillus subtilis while about 70% of those in Nuruk T seemed to be spherical bacteria. In both Nuruks about 80% of lactic acid bacteria were observed as spherical ones. c) The population of yeasts in 1g. of Nuruk S was about $6{\times}10^5$, 56.5% of which were TTC pink yeasts, 16% of which were TTC red pink yeasts, 8% of which were TTC red yeasts, 19.5% of which were TTC white yeasts. In Nuruk T(1g) the number of yeasts accounted for $14{\times}10^4$ and constituted of 42% TTC pink. 21% TTC red pink 28% TTC red and 9% TTC white. d) The enzyme activity of 1g Nuruk S was: Liquefying type Amylase, $D^{40}/_{30},=256$ W.V. Saccharifying type Amylase, 43.32 A.U. Acid protease, 181 C.F.U. Alkaline protease, 240C.F.U. The enzyme activity of 1g Nuruk T was: Liquefying type Amylase $D^{40}/_{30},=32$ W.V. Saccharifying type amylase $^{30}34.92$ A.U. Acid protease, 138 C.F.U. Alkaline protease 31 C.F.U. 2. During the fermentation of 'Takju' employing the Nuruks S and T the microflora and enzyme activity throughout the brewing were observed in 12 hour intervals. TTC pink and red yeasts considered to be the major yeasts were isolated and cultured. The strains ($1{\times}10^6/ml$) were added to the mashes S and T in which pH was adjusted to 4.2 and the change of microflora was examined during the fermentation. The results were: a) The molds disappeared from each sample plot since 2 to 3 days after mashing while the population of aerobic bacteria was found to be $10{\times}10^7-35{\times}10^7/ml$ inS plots and $8.2{\times}10^7-12{\times}10^7$ in plots. Among them the coccus propagated substantially until some 30 hours elasped in the S and T plots treated with lactic acid but decreased abruptly thereafter. In the plots of SP. SR. TP. and TR the coccus had not appeared from the beginning while the bacillus showed up and down changes in number and diminished by 1/5-1/10 the original at the end stage. b) The lactic acid bacteria observed in the S plot were about $7.4{\times}10^7$ in number per ml of the mash in 24 hours and increased up to around $2{\times}10^8$ until 3-4 days since. After this period the population decreased rapidly and reached about $4{\times}10^5$ at the end, In the plot T the lactic acid becteria found were about $3{\times}10^8$ at the period of 24 fours, about $3{\times}10$ in 3 days and about $2{\times}10^5$ at the end in number. In the plots SP. SR. TP, and TR the lactic acid bacteria observed were as less as $4{\times}10^5$ at the stage of 24 hours and after this period the organisms either remained unchanged in population or ceased to exist. c) The maiority of lactic acid bacteria found in each mash were spherical and the change in number displayed a tendency in accordance with the amount of lactic acid and alcohol produced in the mash. d) The yeasts had showed a marked propagation since the period of 24 hours when the number was about $2{\times}10^8$ ㎖ mash in the plot S. $4{\times}10^8$ in 48 hours and $5-7{\times}10^8$ in the end period were observed. In the plot T the number was $4{\times}10^8$ in 24 hours and thereafter changed up and down maintaining $2-5{\times}10^8$ in the range. e) Over 90% of the yeasts found in the mashes of S and T plots were TTC pink type while both TTC red pink and TTC red types held range of $2{\times}10-3{\times}10^7$ throughout the entire fermentation. f) The population of TTC pink yeasts in the plot SP was as $5{\times}10^8$ much as that is, twice of that of S plot at the period of 24 hours. The predominance in number continued until the middle and later stages but the order of number became about the same at the end. g) Total number of the yeasts observed in the plot SR showed little difference from that of the plot SP. The TTC red yeasts added appeared considerably in the early stage but days after the change in number was about the same as that of the plot S. In the plot TR the population of TTC red yeasts was predominant over the T plot in the early stage which there was no difference between two plots there after. For this reason even in the plot w hers TTC red yeasts were added TTC pink yeasts were predominant. TTC red yeasts observed in the present experiment showed continuing growth until the later stage but the rate was low. h) In the plot TP TTC pink yeasts were found to be about $5{\times}10^8$ in number at the period of 2 days and inclined to decrease thereafter. Compared with the plot T the number of TTC pink yeasts in the plot TP was predominant until the middle stage but became at the later stage. i) The productivity of alcohol in the mash was measured. The plot where TTC pink yeasts were added showed somewhat better yield in the earely stage but at and after the middle stage the difference between the yeast-added and the intact mashes was not recognizable. And the production of alcohol was not proportional to the total number of yeasts present. j) Activity of the liquefying amylase was the highest until 12 hours after mashing, somewhat lowered once after that, and again increased around 36-48 hours after mashing. Then the activity had decreased continuously. Activity of saccharifying amylase also decreased at the period of 24 hours and then increased until 48 hours when it reached the maximum. Since, the activity had gradually decreased until 72 hours and rapidly so did thereafter. k) Activity of alkaline protease during the fermentation of mash showed a tendency to decrease continusously although somewhat irregular. Activity of acid protease increased until hours at the maximum, then decreased rapidly, and again increased, the vigor of acid protease showed better shape than that of alkaline protease throughout. 3. TTC pink yeasts that were predominant in number, two strains of TTC red pink yeasts that appeared throughout the brewing, and TTC red yeasts were identified and the physiological characters examined. The results were as described below. a) TTC pinkyeasts (B-50P) and two strains of TTC red pink yeasts (B-54 RP & B-60 RP) w ere identified as the type of Saccharomyces cerevisiae and TTC pink red yeasts CB-53 R) were as the type of Hansenula subpelliculosa. b) The fermentability of four strains above mentioned were measured as follows. Two strains of TTC red pink yeasts were the highest, TTC pink yeasts were the lowest in the fermantability. The former three strains were active in the early stage of fermentation and found to be suitable for manufacturing 'Takju' TTC red yeasts were found to play an important role in Takju brewing due to its strong ability to produce esters although its fermentability was low. c) The tolerance against nitrous acid of strains of yeast was marked. That against lactic acid was only 3% in Koji extract, and TTC red yeasts showed somewhat stronger resistance. The tolerance against alcohol of TTC pink and red pink yeasts in the Hayduck solution was 7% while that in the malt extract was 13%. However, that of TTC red yeasts was much weaker than others. Liguefying activity of gelatin by those four strains of yeast was not recognized even in 40 days. 4. Fermentability during Takju brewing was shown in the first two days as much as 70-80% of total fermentation and around 90% of fermentation proceeded in 3-4 days. The main fermentation appeared to be completed during :his period. Productivity of alcohol during Takju brewing was found to be apporximately 65% of the total amount of starch put in mashing. 5. The reason that Saccharomyces coreanuss found be Saito in the mash of Takju was not detected in the present experiment is considered due to the facts that Aspergillus oryzae has been inoculated in the mold wheat (Nuruk) since around 1930 and also that Koji has been used in Takju brewing, consequently causing they complete change in microflora in the Takju brewing. This consideration will be supported by the fact that the original flavor and taste have now been remarkably changed.

  • PDF