• Title/Summary/Keyword: yield locus

Search Result 51, Processing Time 0.033 seconds

Grain Size Relate Gene in CNDH, and Identification Of Shape Based on QTL Mapping in Rice

  • Ji-Hun Kim;Jae-Ryoung Park;Yoon-Hee Jang;Eun-Gyeong Kim;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.279-279
    • /
    • 2022
  • Rice is 34% of the world's population used as a staple food. But the world population is increasing. Food security is not well protected. Improving cultivar development can address food security. Quantitative trait locus (QTL) mapping is a statistical analysis using both phenotypic and genotypic dates. The purpose of QTL mapping is to determine a gene. Increasing grain size is a way to increase yield in rice. Grain size-related genes were mapped using CNDH population obtained by cross-breeding Cheongcheong (Indica) and Nagdong (Japonica) through anther culture. Grain harvested from experimental field of Kyungpook National University in Gunwi in 2021. Genes related to grain length were detected between RM5964-RM12285, RM20924-RM20967 in chromosome 1, 7. LOD score is 5.88 and 5.6. Genes related to grain width was detected between RM289-RM18130 in chromosome 5. LOD score is 4.57. Genes related to grain length/width ratio were detected between RM5459-RM3482, RM5699-RM1211 and RM3838-RM3381 in chromosome 1, 2, 5. LOD score is 3.75, 3.14 and 3.41. 4 genes was detected in chromosome 1 and 2 genes was detected in chromosome 2 and 7 genes was detected in chromosome 5. 2 genes related to grain shape and quality were detected. 4 genes related to grain length were detected. 4 genes related to grain size were detected. 1 gene related to grain size and weight was detected. 2 genes related to grain length and weight were detected. By finding the gene related to grain size, it provides food to people threatened by food security and solves the food shortage.

  • PDF

Development of dry milling suitable rice cultivar to invigorate rice processing products

  • Jeung, Ji-Ung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.10-10
    • /
    • 2017
  • Rice consumption has been continuously decreasing as the eating habits of Koreans have become westernized and diversified. The per capita annual rice consumption in Korea has dropped sharply from 136.4 kg in 1970 to 61.9 kg in 2016. The Korean government, therefore, has been trying to promote rice consumption by invigorating the processed food industry using rice flour. To facilitate the market for processed rice foods, it is essential to develop proper milling technology in terms of flour particle size and damaged starch content to produce high quality rice flour at competitive cost. Dry milling and wet milling are the two major processes used to produce rice flour. Although the dry milling process is relatively simple with a lower production cost, damaged starch content increases because of the high grain hardness of rice. In wet milling, the quality of rice flour is improved by reducing flour particle size as well as damaged starch content through soaking procedures. However, the production costs are high because of the additional expenses associated with the disposal of waste water, sterilization and drying of the wet flour. Recently developed technologies such as jet milling and cryogenic milling also require expensive investment and production. Therefore, developing new rice cultivars with dry milling adaptability as well as good processing properties is an important goal of rice breeding in Korea. 'Suweon 542' is a floury endosperm mutant line derived from sodium azide treatment on a high-yield, early maturing, and non-glutinous japonica rice cultivar, 'Namil'. Compared with the wild type, after dry milling process, the grain hardness of 'Suweon 542' was significantly lower because of its round and loosely packed starch granules. Also, the flour of 'Suweon 542' had significantly smaller particles and less damaged starch than 'Namil' and other rice cultivars and its particle size distribution was similar to a commercial wheat cultivar. Recently, through collaborations with nine universities and food companies, a total of 21 kinds of processed prototypes, using the dry milling flour of 'Suweon 542', were evaluated. In the production of major rice processing products, there was no significant quality difference between the flours prepared by wet milling and dry milling. Although the amount of water added to the dough was slightly increased, it was confirmed that the recipe applying the wet flour could be used without significant change. To efficiently transfer the floury endosperm characteristics of 'Suweon 542' to other commercial rice cultivars, it is essential to develop DNA marker tightly linked to the target gene. Association analysis using 70 genome-wide SSR markers and 94 F2 plants derived from 'Suweon 542'/'Milyang 23' showed that markers on chromosome 5 explained a large portion of the variation in floury grains percentage (FGP). Further analysis with an increased number of SSR markers revealed that the floury endosperm of 'Suweon 542' was directed by a major recessive locus, flo7(t), located in the 19.33-19.86 Mbp region of chromosome 5, with RM18639 explaining 92.2% of FGP variation in the F2 population. Through further physical mapping, a co-segregate and co-dominant DNA marker with the locus, flo7(t) was successfully developed, by which, thereby, breeding efficiency of rice cultivars having proper dry milling adaptability with high yield potential or useful functional materials would be improved. 'Suweon 542' maintained the early maturity of the wild type, Namil, which can be used in rice-wheat double cropping systems in Korea not only for improved arable land but also for sharing flour production facilities. In addition to the high susceptibility against major rice diseases, nevertheless, another possible drawback of 'Suweon 542' is the high rate of viviparous under prolonged rainfall during the harvesting season. To overcome susceptibility and vivipary of 'Suweon 542', the progeny lines, derived from the crosses 'Suweon 542' and 'Jopyeong', an early maturing rice cultivar with multiple resistance against rice blast, bacterial blight, and rice strip virus, and 'Heugjinju', a anthocyanin pigment containing black rice cultivar, were intensively evaluated. As the outputs, three dry milling suitable rice elite lines, 'Jeonju614', 'Jeonju615', and 'Jeonju616' were developed.

  • PDF

Identification of QTLs for Some Agronomic Traits in Rice Using an Introgression Line from Oryza minuta

  • Rahman, Md Lutfor;Chu, Sang Ho;Choi, Min-Sun;Qiao, Yong Li;Jiang, Wenzhu;Piao, Rihua;Khanam, Sakina;Cho, Young-Il;Jeung, Ji-Ung;Jena, Kshirod K.;Koh, Hee-Jong
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.16-26
    • /
    • 2007
  • Wild progenitor species provide potential gene sources for complex traits such as yield and multiple resistances to biotic and abiotic stresses, and thus are expected to contribute to sustainable food supplies. An introgression line 'IR71033-121-15' was derived from a wild species Oryza minuta (2n = 48, BBCC, Acc No. 101141) at IRRI. Introgression analysis using 530 SSR and STS markers revealed that at least 14 chromosomal segments distributed over 12 chromosomes had been introgressed from O. minuta. An $F_{2:3}$ population from the cross between IR71033 and Junambyeo (a Korean japonica cultivar) consisting of 146 lines was used for quantitative trait loci (QTL) analysis of 16 agronomic traits. A total of 36 single-locus QTLs (S-QTLs) and 45 digenic epistasis (E-QTLs) were identified. In spite of it's inferiority of O. minuta for most of the traits studied, its alleles contributed positively to 57% of the QTLs. The other QTLs originated from either parent, IR71033 or Junambyeo. QTLs for phenotypically correlated traits were mostly detected on introgressed segments. Fourteen QTLs corresponded to QTLs reported earlier, indicating that these QTLs are stable across genetic backgrounds. Twenty-two QTLs controlling yield and its components had not been detected in previous QTL studies. Of these, thirteen consisted of potentially novel alleles from O. minuta. QTLs from O. minuta introgression could be new sources of natural variation for the genetic improvement of rice.

qVDT11, a major QTL related to stable tiller formation of rice under drought stress conditions

  • Kim, Tae-Heon;Cho, Soo-Min;Han, Sang-Ik;Cho, Jun-Hyun;Kim, Kyung-Min;Lee, Jong-Hee;Song, You-Chun;Park, Dong-Soo;Oh, Myung-Gyu;Shin, Dongjin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.91-91
    • /
    • 2017
  • Drought is the most serious abiotic stress limiting rice production. However, little progress has been made in the genetic analysis of drought tolerance, because it is a complex trait controlled by a number of genes and affected by various environmental factors. In here, we screened 218 rice genetic resources for drought tolerance at vegetative stage and selected 32 highly drought tolerant varieties in greenhouse. Under rain-fed conditions, Grain yield of Nagdong was decreased by 53.3% from 517 kg/10a to 241 kg/10a when compare to irrigation condition. By comparison, grain yield of Samgang was decreased by 23.6% from 550 kg/10a to 420 kg/10a. The variety Samgang exhibited strong drought tolerance and stable yield in rain-fed conditions and was selected for further study. To identify QTLs for drought tolerance, we examined visual drought tolerance (VDT) and relative water content (RWC) using a doubled haploid (DH) population consisted of 101 lines derived from a cross between Samgang (a drought tolerance variety) and Nagdong (a drought sensitive variety). Three QTLs for VDT were located on chromosomes 2, 6, and 11, respectively, and explained 41.8% of the total phenotypic variance. qVDT2, flanked by markers RM324 and S2016, explained 8.8% of the phenotypic variance with LOD score of 3.3 and an additive effect of -0.6. qVDT6 was flanked by S6022 and S6023 and explained 12.7% of the phenotypic variance with LOD score of 5.0 and an additive effect of -0.7. qVDT11, flanked by markers RM26765 and RM287, explained 19.9% of the phenotypic variance with LOD score of 7.1 and an additive effect of -1.0. qRWC11 was the only QTL for RWC to be identified; it was in the same locus as qVDT11. qRWC11 explained 19.6% of the phenotypic variance, with a LOD score of 4.0 and an additive effect of 9.7. To determine QTL effects on drought tolerance in rain-fed paddy conditions, seven DH lines were selected according to the number of QTLs they contained. Of the drought tolerance associated QTLs, qVDT2 and qVDT6 did not affect tiller formation, but qVDT11increased tiller number. Tiller formation was most stable when qVDT2 and qVDT11 were combined. DH lines with both of these drought tolerance associated QTLs exhibited the most stable tiller formation. These results suggest that qVDT11 is important for drought tolerance and stable tiller formation under drought stress condition in field.

  • PDF

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • LEE Mi-Ock;SONG Ki-Hong;LEE Hyun-Kyung;JUNG Ji-Yoon;CHOE Vit-Nary;CHOE Sunghw
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus It is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were Shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.139-144
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd /dwf3 were shown to be blocked in D$^4$reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bril/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRIl could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

Mapping Grain Weight QTL using Near Isogenic Lines from an Interspecific Cross (벼 종간잡종 유래 근동질 유전자계통 이용 종자중 관여 유전자 분석)

  • Kang, Ju-Won;Yang, Paul;Yun, Yeo-Tae;Ahn, Sang-Nag
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.304-310
    • /
    • 2011
  • In previous studies, we reported QTLs for grain weight (GW), qGW3 and for spikelets per panicle (SPP), qSPP3 linked to RM60 on chromosome 3 using advanced backcross lines derived from a cross between Oryza sativa ssp. Indica cv. Milyang 23 and O. glaberrima. The O. glaberrima alleles at this locus increased GW and spikelets per panicle in the Milyang 23 background. To further confirm and narrow down the position of the QTLs on chromosome 3, substitution mapping was performed using five lines containing the target O. glaberrima segment on chromosome 3. The size and position of the O. glaberrima segment on chromosome 3 were different in each line. These lines possessed 3-10 non-target O. glaberrima introgressions in the Milyang 23 background. These five lines were evaluated for seven agronomic traits including 1,000 grain weight and spikelets per panicle and also genotyped with seven SSR markers. Four lines were informative in delimiting the position of QTLs, qGW3 and qSPP3. Two lines with the O. glaberrima segment flanked by SSR markers, RM60 and RM523 displayed significantly higher values than Milyang 23 in GW and SPP whereas two lines without that O. glaberrima segment displayed no difference in GW and SPP compared to Milyang 23. The result indicates that two QTL, qGW3 and qSPP3 are located in the interval between RM60 and RM523 which are 1.2-Mb apart. Introgression lines having QTLs, qGW3 and qSPP3 would be useful materials not only to indentify the relationship between these two yield QTLs, but also to develop high yielding variety via marker-aided selection technology.

Detection of genome-wide structural variations in the Shanghai Holstein cattle population using next-generation sequencing

  • Liu, Dengying;Chen, Zhenliang;Zhang, Zhe;Sun, Hao;Ma, Peipei;Zhu, Kai;Liu, Guanglei;Wang, Qishan;Pan, Yuchun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.320-333
    • /
    • 2019
  • Objective: The Shanghai Holstein cattle breed is susceptible to severe mastitis and other diseases due to the hot weather and long-term humidity in Shanghai, which is the main distribution centre for providing Holstein semen to various farms throughout China. Our objective was to determine the genetic mechanisms influencing economically important traits, especially diseases that have huge impact on the yield and quality of milk as well as reproduction. Methods: In our study, we detected the structural variations of 1,092 Shanghai Holstein cows by using next-generation sequencing. We used the DELLY software to identify deletions and insertions, cn.MOPS to identify copy-number variants (CNVs). Furthermore, we annotated these structural variations using different bioinformatics tools, such as gene ontology, cattle quantitative trait locus (QTL) database and ingenuity pathway analysis (IPA). Results: The average number of high-quality reads was 3,046,279. After filtering, a total of 16,831 deletions, 12,735 insertions and 490 CNVs were identified. The annotation results showed that these mapped genes were significantly enriched for specific biological functions, such as disease and reproduction. In addition, the enrichment results based on the cattle QTL database showed that the number of variants related to milk and reproduction was higher than the number of variants related to other traits. IPA core analysis found that the structural variations were related to reproduction, lipid metabolism, and inflammation. According to the functional analysis, structural variations were important factors affecting the variation of different traits in Shanghai Holstein cattle. Our results provide meaningful information about structural variations, which may be useful in future assessments of the associations between variations and important phenotypes in Shanghai Holstein cattle. Conclusion: Structural variations identified in this study were extremely different from those of previous studies. Many structural variations were found to be associated with mastitis and reproductive system diseases; these results are in accordance with the characteristics of the environment that Shanghai Holstein cattle experience.

Marker Assisted Selection of Brown Planthopper Resistance and Development of Multi-Resistance to Insect and Diseases in Rice (Oryza sativa L.) (DNA 마커를 이용한 벼멸구 저항성 선발 및 복합내병충성 벼 계통 육성)

  • Lee, Jong-Hee;Yeo, Un-Sang;Cho, Jun-Hyun;Lee, Ji-Yoon;Song, You-Chun;Shin, Mun-Sik;Kang, Hang-Won;Sohn, Jae-Keun
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.413-421
    • /
    • 2011
  • The main objective of this study was to develop the multi-resistance lines to insects(brown planthopper; BPH, rice green leafhopper; GRH) and disease(blast; BL, bacterial blight; BB and rice stripe virus disease;RSV) with good grain quality and plant type by combining conventional breeding and marker assisted selection(MAS) and to eliminate the linkage drag effects between Bph1 gene and culm length, we conducted MAS of Bph1 gene in advanced backcross and double cross progenies. 'Nampyeong', 'Junam' and 'Milyang220' were used as the parent in this study. 'Milyang220' was used as the donor of brown planthopper resistance gene Bph1 with tall culm length. Two backcross progenies were developed using two recipients 'Nampyeong' carrying GRH resistance gene Grh3(t) with good grain appearance and 'Junam' harboring bacterial blight resistance gene Xa3 with short culm length. Two $BC_1$ generations were resulted from the backcrossing of the $F_1$ plants with recurrent parents 'Nampyeong' and 'Junam'. The second rounds of backcrossing($BC_2$) were derived from the cross of selected resistant $BC_1F_1$ plants based on heterozygous genotype of RM28493 linked to Bph1 gene. The double crossed population was constructed from the cross of between each heterozygous $BC_2F_1$ plants at RM28493 locus of '$Nampyeong^*3$ / Milyang220' and '$Junam^*3$ / Milyang220'., The homozygous alleles in Bph1 gene were selected using co-dominant DNA marker RM28493 in double crossed population. Eighty-five lines with multi-resistance to BL, BB, RSV, GRH and BPH were selected by bio-assay and MAS in generation of double crossing. The culm length, head rice ratio and yield of the selected multi resistance lines was ranged from 71 to 88 cm, from 51 to 93%, from 449 to 629 kg/10a. respectively. We can select a promising multi resistance line similar with 'Nampyeong' of major agronomic traits such as culm legnth, head rice ratio and yield. It was designated as Milyang265. Finally this study was developed the multi resistant varieties against to insects and diseases with the good grain quality 'Milyang265' by the advanced backcross and double cross combining MAS and it can be used as genetic resources of multi-resistance to insect and diseases in rice breeding programs.