• Title/Summary/Keyword: yellowfin sole

Search Result 21, Processing Time 0.021 seconds

Characteristics of the yellowfin sole and dover sole skins as processing material of gelatin (젤라틴의 원료로서 가자미류 껍질의 성상)

  • Kim, Jin-Soo;Kim, Jeong-Gyun;Cho, Soon-Yeong;Ha, Jin-Hwan;Lee, Eung-Ho
    • Applied Biological Chemistry
    • /
    • v.36 no.4
    • /
    • pp.290-295
    • /
    • 1993
  • In order to utilize effectively fish skin from fish processing, characteristics of the yellowfin sole and dover sole skins were investigated. In the yellowfin sole, the crude protein content and yield of fish skin used for the preparation of gelatin were 22.3% and 11.3%, respectively and in the dover sole, 17.2% and 8.9%, respectively. In the yellowfin sole skin, the soluble and insoluble collagen occupied 66.1% and 33.9%, respectively and in the dover sole skin, 78.8% and 21.1%, respectively. No difference in the amino acid composition between soluble and insoluble collagen was detected. The sum of proline and hydroxyproline content in the collagen extracted from fish skin was lower than that of those from pork skin or bone. The molecular weight of the two major subunits from the soluble collagen in the yellowfin sole skin were found to be 143 KDa and 202 KDa. Those in the dover sole skin were 142 KDa and 207 KDa. The physico-chemical properties such as the melting point and gelling point of yellowfin sole skin gelatin were superior to those of dover sole skin gelatin.

  • PDF

Improvement on the Functional Properties of Gelatin Prepared from the Yellowfin Sole Skin by Precipitation with Ethanol (알코올처리에 의한 각시가자미껍질 젤라틴의 기능성 개선)

  • Kim, Jin-Soo;Lee, Eung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.683-689
    • /
    • 1994
  • With a view to utilizing effectively fish skin wastes from marine manufactory, a gelatin solution extracted from yellowfin sole skin was fractionated by precipitation with ethanol, and then the functional and physico-chemical properties for the fractionated gelatin were determined. Ethanol was added up to 50% of ethanol content to a gelatin solution extracted from yellowfin sole skin, then the mixture was left to stand at $0^{\circ}C$ for 12 hours. Finally, the precipitates were dried by hot-air ($40^{\circ}C$). The gel strength and melting point of a 10% gel of gelatin prepared from yellowfin sole skin by precipitation with ethanol has 322.4g and $23.3^{\circ}C$, respectively. The physico-chemical properties of the ethanol treated fish skin gelatin were superior to those of fish skin gelatin prepared without ethanol treatment. Besides, the functional properties of the ethanol treated gelatin were lower in solubility and higher in water holding capacity, oil binding capacity, emulsifying activity, emulsifying stability, foam expansion and foam stability than those of pork skin gelatin sold on market as well as gelatin prepared without ethanol treatment. It may be concluded, from these results, that the fish skin gelatin prepared by precipitation with ethanol can be effectively utilized as a human food by improving the functional properties.

  • PDF

The Suitable Processing Condition for Gelatin Preparation from Yellowfin Sole Skin (각시가자미껍질로부터 젤라틴 제조를 위한 조건의 검토)

  • Kim, Jin-Soo;Kim, Jeong-Gyun;Cho, Soon-Yeong;Kang, Kyung-Soo;Ha, Jin-Hwan;Lee, Eung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.716-723
    • /
    • 1993
  • To utilize effectively fish skin wasted from fish processing, a yellowfin sole skin gelatin was prepared by alkaline extraction method and the physico-chemical properties were examined. Conditions for the suitable extraction and decolorization for gelatin preparation from yellowfin sole skin are as follows: the skin is limed with 1.5% calcium hydroxide solution at $5^{\circ}C$ for 5 days, washed throughly with tap water, extracted with 6 volumes of water ($pH5.0{\sim}7.0$) to dehydrated skin for 3 hours at $50^{\circ}C$, and then bleached with 3% activated carbon. Though yellowfin sole skin gelatin was prepared under above condition, the physico-chemical property values such the melting point and gelling point of that were lower than those of pork skin gelatin. Therefore, the purified yellowfin sole skin gelatin requires a suitable modification operation for more a good quality gelatin manufacture.

  • PDF

Lipid Oxidation in Roasted Fish Meat II. Rancidity in Roasted and/or Reheated White Musled Fish (어육의 배소에 의한 지질산화에 관한 연구 II. 백색육어의 배소 및 재가열에 의한 지질의 산패)

  • LEE Kang-Ho;CHO Ho-Sung;LEE Jong-Ho;SHIM Ki-Hwan;RYU Hong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.714-718
    • /
    • 1997
  • The tendency of rancidity in roasted and/or reheated yellowfin sole and yellow croaker was investigated as typical white muscled fish. In fatty acid composition of the total lipid, saturated fatty acid was $27.4\%,\;33.4\%$; monoenoic acid, $36.5\%,\;38.7\%$ and polyenoic acid, $34.5\%,\;26.5\%$ in yellowfin sole and yellow croaker, respectively. The ratio of unsaturated fatty acid (UFA)/saturated fatty acid (SFA) were 2,6, 2.0 and content of total lipid was $1.4\%,\;0.8\%$, respectively. Peroxide content decreased after heating in yellowfin sole while decreased after heating and tended to increase after reheating in yellow croaker. Thiobarbituric acid value increased during roasting and heating in all the samples but decreased after reheating. Acid value increased after roasting, heating and reheating in all samples, particularly higher in yellowfin sole which have a high content of UFA. Conjugated dienes continuously increased during the repeats of heating, showing more increase in the fillet with Skin than the skinless.

  • PDF

Characterization of Fish Oil Extracted from Fish Processing By-products

  • Byun, Hee-Guk;Eom, Tae-Kil;Jung, Won-Kyo;Kim, Se-Kwon
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.1
    • /
    • pp.7-11
    • /
    • 2008
  • To improve the utilization of fish processing by-products, fish oils were extracted from hoki, yellowfin sole, mackerel, and horse mackerel, and their compositions were examined. The proximate compositions obtained for these 4 species of by-product revealed they were composed of 68.1$\sim$78.1% moisture, 1.2$\sim$1.6% ash, and 13.8$\sim$18.8% protein. Fish oils extracted from the hoki, yellowfin sole, mackerel, and horse mackerel were 5.5, 9.4, 13.4, and 10.3%, respectively. The total lipids extracted from the by-products of the 4 species were 6.21, 10.43, 12.81 and 10.06%, of which neutral lipids accounted for 77.38, 77.46, 87.21 and 86.79%, respectively. Neutral lipid analysis by TLC showed that triacylglycerol was the major component, while 1,3- and 1,2-diacylglycerols, free fatty acids, free sterols, and sterol esters were present as minor components. The major fatty acids were palmitic acid, stearic acid, and oleic acid. DHA and EPA were contained at levels of 0.2$\sim$4.7% and 3.7$\sim$9.5%, respectively, in the 4 types of fish oil. The fish oils extracted from the dark muscle fish, mackerel and horse mackerel, had greater polyunsaturated fatty acid (PUFA) contents than those of the white muscle fish species, hoki and yellowfin sole.

Food Habits and Ecological Interactions of Alaska Plaice, Pzeuronectes quadrituberculatus, with Other Flatfish Species in the Eastern Bering Sea

  • ZHANG Chang Ik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.3
    • /
    • pp.150-160
    • /
    • 1988
  • Food habits of Alaska plaice, Pleuronectes quadrituberculatus, and ecological interactions of this species with yellowfin sole, Limanda aspera, and rock sole, Lepidopsetta bilineata, in the eastern Bering Sea were studied. Alaska plaice mainly feed on polychaetes regardless of sex and size of fish. However, it was shown that food differed by sampling area. Feeding did not occur at night. Food competition seems to be negligible among the three shallow water fiatfish species inhabiting the eastern Bering Sea due to differences in food spectra or spatial distribution.

  • PDF

Isolation and Characterization of Antioxidative Peptides from Enzymatic Hydrolysates of Yellowfin Sole Skin Gelatin (가자미피 젤라틴 가수분해물로부터 항산화성 펩티드의 분리${\cdot}$정제 및 특성)

  • KIM Se-Kwon;LEE Hyun-Chel;BYUN He-Guk;JEON Yon-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.246-255
    • /
    • 1996
  • To develop a natural antioxidative peptide, the gelatin was extracted from fish (Yellowfin sole) skin by hot $water(50^{\circ}C)$ extraction method and hydrolyzed with Alcalase, pronase and collagenase through a continuous 3-step membrane reactor. Each step enzymatic hydrolysates were determined the antioxidative activity and their synergistic effects, compared with $\alpha-tocopherol$ and butylated hydroxytoluene (BHT). Also, we tried to investigate the antioxidative disposition of peptide which was successfully separated by gel filtration, ion-exchange chromatography, and HPIC in cultured rat hepatocytes intoxicated with tert-butyl hydroperoxide (TBHP). Second step enzymatic hydrolysate (SSEH) among all hydrolysates and $\alpha-tocoperol$ was showed the strongest antioxidative activity. The optimum concentration of antioxidative activity for SSEH was $1\%(w/w)$ in linoleic acid. The synergistic effects were increased in using the hydrolysate with tocopherol and BHT. In the presence of the peptide isolated from SSEH, supplemented hepatocytes exposed to TBHP showed that delayed cell killing and decreased significantly the lipid peroxidation, compared with hepatocytes not cultured with isolated peptide.

  • PDF

Effect of additives on physical properties of yellowfin sole skin gelatin prepared by ethanol fractional precipitation (알코올처리 각시가자미껍질 젤라틴의 물리적 특성에 미치는 첨가물의 영향)

  • Cho, Soon-Yeong;Ha, Jin-Hwan;Lee, Eung-Ho;Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.218-221
    • /
    • 1996
  • With a view to increase utility of ethanol fractioned fish skin gelatin as a food source, efforts of additives on physical properties of the gelatin were investigated. The physical properties such as gel strength, melting Point, gelling point and viscosity of both ethanol-treated and untreated gelatins were improved by adding ferric ion, sugar and ethanol to the gelatin sol, but were deteriorated by the added sodium chloride and acids. Insignificant difference in effect of physical properties on additives such as sodium chloride, sugar and ethanol between ethanol-treated and untreated gelatins were not observed. However, the effect of ferric ion and acids on the physical properties of ethanol-treated gelatin has a greater than that of untreated gelatin.

  • PDF