• Title/Summary/Keyword: yellow phosphor

Search Result 93, Processing Time 0.033 seconds

Effect of Lu3Al5O12:Ce3+ and (Sr,Ca)AlSiN3:Eu2+ Phosphor Content on Glass Conversion Lens for High-Power White LED

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeon, Dae-Woo;Jung, Hyun-Suk;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • Currently, the majority of commercial white LEDs are phosphor converted LEDs made of a blue-emitting chip and YAG yellow phosphor dispersed in organic silicone. However, silicone in high-power devices results in long-term performance problems such as reacting with water, color transition, and shrinkage by heat. Additionally, yellow phosphor is not applicable to warm white LEDs that require a low CCT and high CRI. To solve these problems, mixing of green phosphor, red phosphor and glass, which are stable in high temperatures, is common a production method for high-power warm white LEDs. In this study, we fabricated conversion lenses with LUAG green phosphor, SCASN red phosphor and low-softening point glass for high-power warm white LEDs. Conversion lenses can be well controlled through the phosphor content and heat treatment temperature. Therefore, when the green phosphor content was increased, the CRI and luminance efficiency gradually intensified. Moreover, using high heat treatment temperatures, the fabricated conversion lenses had a high CRI and low luminance efficiency. Thus, the fabricated conversion lenses with green and red phosphor below 90 wt% and 10 wt% with a sintering temperature of $500^{\circ}C$ had the best optical properties. The measured values for the CCT, CRI and luminance efficiency were 3200 K, 80, and 85 lm/w.

Synthesis and Luminescent Characteristics of Sr2Ga2S5:Eu2+ Yellow Phosphor for LEDs (LED용 Sr2Ga2S5:Eu2+ 황색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myeong;Park, Jeong-Gyu;Kim, Gyeong-Nam;Lee, Seung-Jae;Kim, Chang-Hae;Jang, Ho-Gyeom
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.237-242
    • /
    • 2006
  • Nowadays, LEDs has been applied to the luminescent devices of various fields because of the invention of high efficient blue chip. Recently, especially, the white LEDs composed of InGaN blue chips and a yellow phosphor (YAG:Ce3+) have been investigated extensively. With the exception of YAG:Ce3+ phosphor, however, there are no reports on yellow phosphor that has significant emission in the 450~470 nm excitation range and this LED system is the rather low color rendering index due to their using two wavelength. Hence, we have attempted to synthesize thiogallate phosphors that efficiently under the long wavelength excitation range in the present case. Among those phosphors, we have synthesized Sr2Ga2S5:Eu2+ phosphor by change the host material of SrGa2S4:Eu2+ which is well known phosphor and we investigated the luminescent properties. In order to obtain the harmlessness and simplification of the synthesis process, sulfide materials and mixture gas of 5 % H2/95 % N2 were used instead of the CS2 or H2S gas. The prepared phosphor shows the yellow color peaking at the 550 nm wavelength and it possible to emit efficiently under the broad excitation band in the range of 300~500 nm. And this phosphor shows high luminescent intensity more than 110 % in comparison with commercial YAG:Ce3+ phosphor and it can be applied for UV LED due to excitation property in UV region.

Synthesis and luminescent properties of $Sr_2SiO_4:Eu^{2+}$ phosphors ($Sr_2SiO_4:Eu^{2+}$ 형광체의 합성 및 발광특성)

  • Kim, Jong-Min;Park, Yong-Seo;Choi, Hyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.430-431
    • /
    • 2009
  • In this study, europium doped strontium silicate ($Sr_2SiO_4:Eu^{2+}$) phosphor has been synthesized by conventional solid-state method and investigated luminescent characteristic. $SrCO_3$ and $SiO_2$ were mixed together by 2:1 mole ratio. Also $NH_4Cl$ was added as a flux. The mixture were sintered at $800^{\circ}C$, $1000^{\circ}C$ for 3h under the atmosphere (5% $H_2$/95% $N_2$). This phosphor can be applicated to the yellow phosphor for white LED because it has yellow emission band (540nm), which emits efficiently under the 370nm excitaion energy.

  • PDF

Synthesis and Properties of Ca8Gd2(PO4)6O2 Nano-Crystalline Structures

  • Bharat, L. Krishna;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.286.1-286.1
    • /
    • 2013
  • Nowadays, the glare towards the light-emitting diode (LED) lighting source has much attention due to its eco-friendly nature, reduced energy consumption, and low CO2 emission. LEDs can show versatile colors by changing the composition ratio of semiconductors. Phosphors re-emit light by absorbing light from LED, which is the key factor for emission. The endeavor to make replica of natural white light is increasing day by day. Industrially, blue LED chip crowned with a yellow phosphor coated lens gives low quality white light. Newly, many researchers are introducing modern approaches, adding red phosphor to the yellow phosphor to increase the quality of white light. Here, we synthesized structurally and chemically stable europium doped oxyapatite Ca8Gd2(PO4)6O2 nano-crystalline structures by a hydrothermal method. The ultrafine structures were formed due to the effect of ethylenediaminetetraacetic acid, which is confirmed by the transmission electron microscope images. The structural properties were analyzed using the X-ray diffraction patterns.

  • PDF

Red-emitting α-SrO·3B2O3:Sm2+ Phosphor for WLED Lamps: Novel Lighting Properties with Two-layer Remote Phosphor Package

  • Tin, Phu Tran;Nguyen, Nhan K.H.;Tran, Minh Q.H.;Lee, Hsiao-Yi
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.389-395
    • /
    • 2017
  • This paper investigates a method to improve the lighting performance of white light-emitting diodes (WLEDs), which are packaged using two separate remote phosphor layers, a yellow-emitting YAG:Ce phosphor layer and a red-emitting ${\alpha}-SrO{\cdot}3B_2O_3:Sm^{2+}$ phosphor layer. The thicknesses of these two layers are $800{\mu}m$ and $200{\mu}m$, respectively. Both of them are examined in conditions where the average correlated color temperatures (CCT) are 7700 K and 8500 K. For this two-layer model, the concentration of red phosphor is varied from 2% to 30% in the upper layer, while in the lower layer the yellow phosphor concentration is kept at 15%. It was found interestingly that the lighting properties such as color rendering index (CRI) and luminous flux are enhanced significantly, while the color uniformity is maintained in a relatively close range to the one of one-layer configuration (measured at the same correlated color temperature). Besides, the transmitted and reflected light of each phosphor layer are revised by combining Kubelka-Munk and Mie-Lorenz theories. Through analysis, it is demonstrated that the packaging configuration of two-layer remote phosphor that employs red-emitting ${\alpha}-SrO{\cdot}3B_2O_3:Sm^{2+}$ phosphor particles provides a practical solution for general WLEDs lighting.

Analysis of Luminous Characteristics of White LEDs Depending on Yellow Phosphors (황색 형광체의 종류에 따른 백색 LED 광원의 발광 특성 분석)

  • Choi, Hyun-Woo;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.2
    • /
    • pp.64-70
    • /
    • 2013
  • In this paper, two white light emitting diodes(LEDs) were manufactured by using two kinds of yellow phosphor, YAG:Ce and $(Sr,Ba)_2SiO_4:Eu$, and their spectroscopic properties were compared and analyzed. We found that the asymmetric double sigmoidal function can be applied to both white LEDs to obtain the center wavelength, the half width, and the skewness parameters. According to this analysis, the half width of the emitting spectrum of silicate phosphor was smaller than that of YAG phosphor, indicating smaller color rendering index. However, the silicate phosphor exhibited better color stability depending on the driving current than the YAG phosphor. The current dependence of the luminous efficacy of both white LEDs was investigated, which showed that efficacy decreased monotonically with current. The efficacy of the silicate-based white LED was lower than that of the YAG-based LED by about 10~12 lm/W.

Green electroluminescence from ZnS:Cu alternating current thick film electroluminescent devices

  • Sharma, Gaytri;Han, Sang-Do;Khatkar, S.P.;Rhee, Young-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1327-1330
    • /
    • 2005
  • The color shifting from yellow to green of electroluminescent emission from ZnS: Cu alternating current thick film electroluminescent (ACTFEL) devices has been achieved by changing the Mg composition in the phosphor layers. The commission international de l'Eclairge (CIE) color co-ordinates of the ACTFEL devices prepared from these phosphor layers show a shifting from yellow (x=0.45, y=0.52) towards green (x=0.36, y=0.58). The various parameters influencing the emission intensity were also investigated.

  • PDF

Analysis of the Temperature Dependence of Phosphor Conversion Efficiency in White Light-Emitting Diodes

  • Ryu, Guen-Hwan;Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.311-316
    • /
    • 2015
  • We investigate the temperature dependence of the phosphor conversion efficiency (PCE) of the phosphor material used in a white light-emitting diode (LED) consisting of a blue LED chip and yellow phosphor. The temperature dependence of the wall-plug efficiency (WPE) of the blue LED chip and the PCE of phosphor are separately determined by analyzing the measured spectrum of the white LED sample. As the ambient temperature increases from 20 to $80^{\circ}C$, WPE and PCE decrease by about 4.5% and 6%, respectively, which means that the contribution of the phosphor to the thermal characteristics of white LEDs can be more important than that of the blue LED chip. When PCE is decomposed into the Stokes-shift efficiency and the phosphor quantum efficiency (QE), it is found that the Stokes-shift efficiency is only weakly dependent on temperature, while the QE decreases rapidly with temperature. From 20 to $80^{\circ}C$ the phosphor QE decreases by about 7% while the Stokes-shift efficiency changes by less than 1%.

Analysis on the Luminous Efficiency of Phosphor-Conversion White Light-Emitting Diode

  • Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.22-26
    • /
    • 2013
  • The author analyzes the luminous efficiency of the phosphor-conversion white light-emitting diode (LED) that consists of a blue LED chip and a yellow phosphor. A theoretical model is derived to find the relation between luminous efficiency (LE) of a white LED, wall-plug efficiency (WPE) of a blue LED chip, and the phosphor absorption ratio of blue light. The presented model enables to obtain the theoretical limit of LE and the lower bound of WPE. When the efficiency model is applied to the measured results of a phosphor-conversion white LED, the limit theoretical value of LE is obtained to be 261 lm/W. In addition, for LE of 88 lm/W at 350 mA, the lower bound of WPE in the blue LED chip is found to be ~34%. The phosphor absorption ratio of blue light was found to have an important role in optimizing the luminous efficiency and colorimetric properties of phosphor-conversion white LEDs.

Fabrication and analysis of luminous properties of ceramic phosphor plate for high-power LED (High-power LED용 ceramic 형광체 plate 제조 및 발광 특성 분석)

  • Ji, Eun-Kyung;Song, Ye-Lim;Lee, Min-Ji;Song, Young-Hyun;Yoon, Dae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.35-38
    • /
    • 2015
  • LEDs are considered to be an alternative for enhancement of energy efficiency, applied for numerous areas such as display, automotive headlight not only lights. Yellow phosphor is generally utilized with blue LEDs to generate WLED, $Y_3Al_{5}O_{12}:Ce^{3+}$ is typically used as the yellow phosphor. The phosphor, mixed with epoxy resin, has been used by being spread and hardened on the blue LED chip. This paste-based packaging gives rise to problems of degradation of phosphor by heat and decrease of luminous efficiency. Although phosphor plate is used instead of the epoxy-phosphor mixture to solve these problems, loss of luminous efficacy by total internal reflection inside the plate also should be solved. In this study, we coated the side of the plate with silver as one of the solution.