• Title/Summary/Keyword: yeast treatment

Search Result 587, Processing Time 0.028 seconds

Comparison of Physico-Chemical Properties of Organic Liquid Fertilizer Made from Seaweed by Adding Microorganism and Molasses (해초류를 이용한 유기 액비 제조 시 발효 미생물원 및 당밀 첨가에 따른 액비의 특성 비교)

  • An, Nan-Hee;Cho, Jung-Rai;Shin, Jae-Hun;Ok, Jung-Hun;Kim, Seok-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.32-39
    • /
    • 2015
  • Objective of this study was to investigate characteristics of inorganic components contained in liquid fertilizer produced using seaweed by adding microorganisms and molasses. Addition of dry yeast to liquid fertilizer resulted in little change in pH and considerable increase in EC with high EC value compared to other liquid fertilizers which have microorganisms additives. Also, it was appeared that the dry yeast-added treatment had higher $NH_4-N$ concentration than other treatments. In the other hand, addition of molasses resulted in low pH compared to the control which has no additives, and EC was not different depending on the amount of molasses. $NH_4-N$ concentration in the 2% molasses added treatment was lowest and it showed a significant difference in the no and 1% molasses added treatments. In conclusion, it was shown that addition of dry yeast to liquid fertilizer increased ammonium nitrogen concentration by accelerating nitrogen mineralization, while molasses has an effect of inhibiting nitrogen mineralization. With application of organic liquid fertilizer containing seaweed increased the fresh weight of chinese cabbage.

Purification and Utilization of Industrial Waste Water Using Microorganism -(Part 1) Isolation of the yeast strain from organic waste water and its use on waste water treatment- (산업폐수의 처리 및 이용에 관한 연구 -(제 1 보) 효모균주의 분리와 이에 의한 유기성폐수의 처리에 관하여-)

  • Lee, Kang-Heup;Yim, Sung-Sam;Park, Tai-Won
    • Applied Biological Chemistry
    • /
    • v.20 no.2
    • /
    • pp.228-235
    • /
    • 1977
  • The yeast strain was isolated from food industry waste water and its identification and biological characteristics were investigated. The optimum condition for cultivations and its activities for the reduction of B.O.D. on the food industry waste water were also confirmed. The results are as follows; 1) The isolated was identified as Candida curvata. 2) Candida curvata grew well in all of the experimented media, so and it can be regarded as a useful strain in the treatment of food industry waste water. 3) There was only a slight difference in the induction period between sterilized cultivation and unsterilized cultivation. But in the ice cream waste water, the period was considerably longer in unsterilized cultivation. 4) Specific rate of growth of Candida curvata in sugar waste water was 0.50/hr, ice cream waste water 0.50/hr, and beer waste water 1.0/hr. 5) Increasing of innoculum reduced the induction period in unsterilized cultivation. 6) The amount of dried yeast from sugar waste water were $175mg/{\ell}$, ice cream waste water $628mg/{\ell}$, and beer waste water $857mg/{\ell}$. Crude protein content in the dried yeast from sugar waste water were 52%, ice cream waste water 54%, and beer waste water 54%. 7) The rate of BOD reduction in sugar waste water were 49%, ice cream waste water 80%, and beer waste water 64%.

  • PDF

Effects of L-carnitine, Selenium-enriched Yeast, Jujube Fruit and Hwangto (Red Clay) Supplementation on Performance and Carcass Measurements of Finishing Pigs

  • Han, Yung-Keun;Thacker, P.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.217-223
    • /
    • 2006
  • Fifty castrated crossbred ($Landrace{\times}Yorkshire$) pigs, weighing an average of $60.6{\pm}3.1kg$ were allotted to one of five treatments in a randomized block design to examine the effects of dietary inclusion of 0.1% L-carnitine (50 ppm carnitine), 0.1% selenium-enriched yeast (0.3 ppm selenium), 0.1% Jujube fruit or 0.1% Hwangto (Red clay) on pig performance and carcass quality. All diets were based on corn, wheat, soybean meal and wheat bran and were formulated to supply 13.8 MJ DE/kg. Dietary supplementation did not influence daily gain (p = 0.57), feed intake (p = 0.52), or feed conversion (p = 0.32). Digestibility of dry matter (p = 0.60), organic matter (p = 0.74), crude protein (p = 0.76), crude fibre (p = 0.70) and energy (p = 0.75) were also unaffected by inclusion of any of the additives. Tissue samples taken from the longissimus muscle showed that the levels of carnitine (p = 0.0001) and selenium (p = 0.0001) were significantly higher with dietary inclusion of carnitine or selenium-enriched yeast. Dietary treatment did not affect dressing percentage (p = 0.33), carcass lean yield (p = 0.99) or first, $10^{th}$ and last rib midline backfat depth (p = 0.45, 0.82 and 0.47, respectively). Dietary treatment also did not affect the percentages of tenderloin (p = 0.37), bacon (p = 0.36), fat and bone (p = 0.56), picnic shoulder (p = 0.25), skirt (p = 0.80), fresh ham (p = 0.31) or ribs (p = 0.79). However, pigs fed the diet containing Jujube fruit had a higher percentage of Boston butt than pigs fed the carnitine or selenium supplemented diets (p = 0.01). Pigs fed added Hwangto had a higher (p = 0.04) percentage of loin compared with pigs fed supplementary selenium or Jujube fruit. Loin muscle from pigs fed carnitine had a significantly lower Hunter colour value for L (whiteness, p = 0.004) and a higher value for $a^*$ (redness; p = 0.069). The overall results indicate that supplementation with L-carnitine and selenium-enriched yeast can produce pork containing higher levels of carnitine and selenium, which could provide health benefits for consumers of pork without detrimental effects on pig performance.

Effective Production of $\beta$-Glucan by the Liquid Cultivation of Agaricus blazei (Agaricus blazei 균사체 배양기술을 통한 효율적인 $\beta$-glucan의 생산)

  • 이승현;임환미;김태영;조남석;박준성;유연우;김무성
    • Korean Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.54-59
    • /
    • 2004
  • $\beta$-Glucan has been efficiently produced with higher yield by the optimization of liquid cultivation conditions. The optimal composition of medium for batch culture was 5% (w/v) of glucose as a carbon source, 0.5% (w/v) of yeast and 0.5% (w/v) of malt extract as a nitrogen source, 0.1% (w/v) of $KH_2PO_4$ and 0.05% (w/v) $MgSO_4{\cdot}7H_2O$, which had been the base medium for determination of other conditions. The set-up conditions are pH 5.0, $28^{\circ}C$, 1 vvm for aeration and 300 rpm for agitation. In order to minimize the inhibition effect of glucose on the initial growth of mycelia and to maximize the production of extracellular $\beta$-glucan, we have reduced the initial glucose feed to 4% and added 2nd feed at the point of 70 hr from the initial feed. The 2nd feed was composed of glucose 3%, yeast extract 0.1 % and malt extract 0.1 %. It improved the $\beta$-glucan yield upto 5.2 g/L in comparison with 2.8 g/L resulted from batch cultivation. Moreover, the serial treatment of a cell wall lytic enzyme and bromelain to the mycelia was effective for extraction of the cell wall bound $\beta$-glucan. The yield of $\beta$-glucan extraction by the enzyme treatment was 3.5 g/L, which was almost 4 times higher than that by hot-water extraction.

Effects of Microbial Additives on the Chemical Characteristics, Microbes, Gas Emissions, and Compost Maturity of Hanwoo Steer Manure (미생물 첨가제가 거세한우 분의 이화학적 특성, 미생물 성상, 가스 발생량 및 퇴비 부숙도에 미치는 영향)

  • Young Ho Joo;Myeong Ji Seo;Seung Min Jeong;Ji Yoon Kim;Sam Churl Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.4
    • /
    • pp.264-269
    • /
    • 2022
  • The present study investigated effects of microbial additives on the floor of Hanwoo steer manure in barn. The treatment following: without additives (CON); additives (AMA). Each treatment used 3 barns as replication and each barn contained 5 Hanwoos. The Hanwoo steer manure in barns was sub-sampled from 5 sides of pen at 0, 4 and 12 weeks. The sub-samples were used for analyses of chemical compositions, microbial counts, gas emissions and compost maturity. The concentrations of moisture, organic matter, total nitrogen and carbon-to-nitrogen (C/N ratio) of Hanwoo steer manure before the microbial additives were each 59.1%, 83.2%, 1.78% and 50.0%, respectively. The counts of lactic acid bacteria, Yeast, Bacillus subtilis, and Escherichia coli (E. coli) were each 5.94, 6.83, 7,28 and 5.52 cfu/g, but Salmonella was not detected. The ammonia-N gas was 4.67 ppm, but hydrogen sulfide gas was not detected. After 4 weeks, moisture, organic matter, total nitrogen, pH and yeast count were lowest (p<0.05). The lactic acid bacteria, yeast, Escherichia coli (E. coli) and ammonia-N gas were not effects of microbial additives. All treatments was not detected at Salmonella count and hydrogen sulfide emission, and compost maturity was completed. After 12 weeks, the lactic acid bacteria and Bacillus subtilis were highest in AMA, while moisture, yeast and E. coli were lowest (p<0.05). The ammonia-N gas was not effect by microbial additive. Salmonella and hydrogen sulfide emission were not detected in all treatments, and compost maturity was completed. Therefore, in present study, the microbial additive did not affect of gas and compost maturity, but the pathogenic microorganism such as E. coli, were inhibited by microbial additives.

Yeast Selection and Comparison of Sterilization Method for Making Strawberry Wine and Changes of Physicochemical Characteristics during Its Fermentation (딸기주 발효를 위한 효모 선발과 살균 방법의 비교 및 발효 중 이화학적 특성의 변화)

  • Jeong, Eun-Jeong;Kim, Yong-Suk;Jeong, Do-Youn;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.642-647
    • /
    • 2006
  • Yeast selection and the sterilization methods of strawberry juice were optimized for making strawberry wine. In addition, changes in the physicochemical characteristics of the wine during its fermentation were estimated. Maehyang and Yukbo cultivars of strawberry were tested for wine making; they contained 9.8 and 9.3% soluble solids and 0.59 and 0.58% titratable acidities, respectively. Among six yeasts tested, the Wg-15 and Sc-51 strains were selected based on the alcohol yield in the strawberry wine. Alcohol and soluble solid contents following heat treatment ($85^{\circ}C$, 10 min) or $K_2S_2O_5$ (200 ppm) treatment for sterilization were 7.10-7.20% and 5.60-5.80%, respectively, and no differences were observed between the Wg-15 and the Sc-51 strains. However, the flavor of wine produced following heat treatment was slightly better than that following $K_2S_2O_5$ treatment. The greatest amounts of alcohol were produced after 2 days of fermentation at $26^{\circ}C$. The alcohol content in wines produced with 12, 14, and 16% sugar content in the initial stages were 5.1, 6.0-6.2, and 7.5-7.7%, and the soluble solid contents were 3.9-4.3, 4.1-4.3, and 5.0-5.3%, respectively; no significant differences were observed between the Wg-15 and the Sc-51 yeast strains. For making strawberry wine, we proposed that the sugar content of Maehyang or Yukbo cultivars be adjusted to 16% soluble solids in the initial stages with heat treated at $85^{\circ}C$ for 10 min and fermentation with the Wg-15 or Sc-51 yeast strains at $26^{\circ}C$ for 8 days.

Effect of Ozone Treatment for Sanitation of Chinese Cabbage and Salted Chinese Cabbage (배추 및 절임배추의 위생화를 위한 오존살균기술의 이용)

  • Lee, Kyong-Haeng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.1
    • /
    • pp.90-96
    • /
    • 2008
  • To retain the fresh taste and flavor of Kimchi, ozone treatment was applied for kimchi food materials. In this study, Chinese cabbage and salted Chinese cabbage, the highest portion of Kimchi materials, were treated by ozone ($3{\sim}9$ ppm) and their microbiological and chemical characteristics were investigated. Initial number of total aerobic bacteria of Chinese cabbage and salted Chinese cabbage were $1.3{\sim}10^7$ and $7.1{\sim}10^6$ CFU/g, respectively. However, when ozone was treated, the number was decreased and this decrease of bacterial number was maintained during storage. Yeast and mold populations were $6.0{\times}10^3$ and $1.2{\times}10^3$ CFU/g in Chinese cabbage and salted Chinese cabbage, respectively; however, an ozone treatment also decreased the yeast and mold populations. Other physical and chemical characteristics of ozone treated sample such as color, hardness, contents of ascorbic acid and reducing sugar of Chinese cabbage and salted Chinese cabbage were not different when compared with control.

Microbiological Composition and Sensory Characterization Analysis of Fermented Sausage Using Strains Isolated from Korean Fermented Foods

  • Jeong, Chang-Hwan;Lee, Sol-Hee;Kim, Hack-Youn
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.928-941
    • /
    • 2022
  • This study aimed to analyze the microbiological composition and sensory characterization of fermented sausage using strains isolated from Kimchi (GK1, Pediococcus pentosaceus SMFM2016-GK1; NK3, P. pentosaceus SMFM2016-NK3), Doenjang (D1, Debaryomyces hansenii SMFM2021-D1), and spontaneously fermented sausage (S8, D. hansenii SMFM2021-S8; S6, Penicillium nalgiovense SMFM2021-S6). The control was commercial starter culture. Nine treatments were applied [GD (GK1+D1), GS (GK1+S8), GDS (GK1+D1+S8), ND (NK3+D1), NS (NK3+S8), NDS (NK3+D1+S8), GND (GK1+NK3+D1), GNS (GK1+NK3+S8), and GNDS (GK1+NK3+D1+S8)] by mixing lactic acid bacteria and yeast, and S6 was sprayed. The microbial composition of fermented sausage was analyzed [aerobic bacteria (AC), Lactobacillus spp. (LABC), Staphylococcus spp. (STPC), and yeast and mold (YMC)], and pH and electronic nose and tongue measurements were taken. The AC, LABC, STPC, and YMC values of the control and treatment groups tended to increase during fermentation (p>0.05). The STPC values of the GD, GS, ND, and GDS groups were similar to that of the control on day 3. The pH of the control on day 3 was significantly lower than that of the GD, ND, and GND groups (p<0.05). Higher levels of 4-methylpentanol, 2-furanmethanol, and propyl nonanoate, which provide a "fermented" flavor, were detected in the GD group compared to in the control and other treatment groups. GD and ND groups showed higher umami values than the control and other treatment groups. Therefore, it is expected that GD can be valuable as a starter culture unique to Korea when manufacturing fermented sausage.

Microbial Changes in Hot Peppers, Ginger, and Carrots Treated with Aqueous Chlorine Dioxide or Fumaric Acid (이산화염소수 또는 푸마르산 처리된 고추, 생강, 당근의 미생물학적 변화)

  • Kim, Min-Hee;Kim, Yun-Jung;Kim, Kwan-Su;Song, Young-Bok;Seo, Won-Joon;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.1013-1017
    • /
    • 2009
  • The effects of aqueous chlorine dioxide ($ClO_2$) or fumaric acid treatment on the reduction of microbial populations in hot pepper, ginger, and carrot, were investigated. Hot pepper, ginger, and carrot were treated with 5, 10, or 50 ppm of $ClO_2$, or 0.1, 0.3, or 0.5%(v/v) fumaric acid solution for 5 min. Aqueous $ClO_2$ or fumaric acid treatment significantly decreased the populations of both total aerobic bacteria, and yeasts and molds. In particular, 50 ppm $ClO_2$ treatment of hot pepper reduced total aerobic bacteria and yeast and mold levels, by 1.52 and 1.81 log CFU/g, respectively, whereas 0.5% (v/v) fumaric acid treatment eliminated all aerobic bacteria and all yeasts and molds. In addition, 50 ppm $ClO_2$ treatment of ginger reduced the populations of total aerobic bacteria, and yeasts and molds, by 0.53 and 0.92 log CFU/g, respectively, and 0.5% (v/v) fumaric acid treatment also decreased total aerobic bacteria, and yeast and mold levels, by 1.44 and 1.28 log CFU/g, respectively. With carrots, 50 ppm $ClO_2$ treatment decreased total aerobic bacteria, and yeasts and molds, by 1.76 and 2.22 log CFU/g, whereas 0.5% (v/v) fumaric acid treatment reduced the levels of these microorganisms by 1.94 and 1.73 log CFU/g, respectively. These results indicate that aqueous $ClO_2$ or fumaric acid treatment is useful for reducing microbial populations in hot peppers, ginger, and carrots.

Effects of Pre-treatment Method on the Surface Microbes of Radish (Raphanus sativus L.) leaves (전처리 방법이 무청의 표면 미생물 변화에 미치는 영향)

  • Ku, Kyung-Hyung;Lee, Kyung-A;Kim, Young-Lim;Lee, Myung-Gi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.649-654
    • /
    • 2006
  • It was investigated the effects of pre-treatment method on the microbes on the surface of radish (Raphanus sativus L.) leaves. Independent variables put in water washing ($X_1$), microwave treatment ($X_2$) and steam treatment ($X_3$) using central composite design and response surface analysis. It was not detected in the pathogenic microbes, Samonella spp., Camphylobacter spp., Vibrio spp., Shigella spp., Staphyloccocus spp., on the surface of collected radish leaves without pre-treatment. But general microbes showed $3.90{\times}10^5{\sim}1.20{\times}10^7CFU/g$ of total microbes, $1.10{\times}10^2{\sim}2.00{\times}10^5CFU/g$ of E. coli, $2.40{\times}10^3{\sim}3.55{\times}10^6CFU/g$ of yeast/mold on the surface of various radish leaves and lactic acid bacteria was detected or not according to collected samples. The best method of pre-treatment was steam treatment on the microbe reduction effect of samples surface. Also, the multiplex regression coefficients analysis was calculated three independent variables ($X_1,\;X_2,\;X_3$) and dependent variables (total microbes, lactic acid bacteria and yeast/molds). It showed high correlation $R^2$, 0.89, 0.87, 0.85, respectively. For effective reduction of surface microbes, the best method was water washing with microwave or steam treatment at the same time.