• Title/Summary/Keyword: yeast strains

Search Result 744, Processing Time 0.032 seconds

Secretory Overexpression of Clostridium Endoglucanase A in Saccharomyces cerevisiae Using GAL10 Promoter and Exoinulinase Signal Sequeice. (Saccharomyces cerevisiae에서 GAL 10 promoter와 exoinulinase 분비 서열을 이용한 Clostridium endoglucanase A의 과발현·분비)

  • Lim, Myung-Ye;Lee, Jin-Woo;Lee, Jae-Hyung;Kim, Yeon-Hee;Seo, Jin-Ho;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1248-1254
    • /
    • 2007
  • The secretory overexpression of Clostridium thermocellum endoglucanase A gene (celA) was examined in Saccharomyces cerevisiae using Kluyveromyces marxianus exoinulinase (INU1) signal sequence and GAL10 promoter. The two plasmids, pYEG-CT1 with its own signal sequence, and pYInu-CT1 with INU1 signal sequence were introduced to S. cerevisiae SEY2102 and S. cerevisiae 2805 host strains, respectively, and then each transformant was selected on the synthetic defined media lacking uracil. The expression level and secretion efficiency of endoglucanase A was increased by $18{\sim}22%$ and 11%, respectively, by INU1 signal sequence over celA signal sequence. By considering the high level of expression (361 unit/I), plasmid stability (89%), and secretion efficiency (70%), S. cerevisiae 2805 harboring plasmid pYInu-CT1 was selected as the opti-mal host vector system for the production of cellulose-degrading enzyme and recombinant yeast probiotic. The total expression and secretion efficiency of endoglucanase A was 418 unit/l and 73%, respectively, in the batch fermentation of S. cerevisiae 2805/pYlnu-CT1 on galactose medium. The mo-lecular weight of secreted endoglucanase A was found to be greater than 100 kDa, presumably due to the N-linked glycosylation.

Development of Microbial Inoculant Using By-product of Oriental Herbal Medicine (한약재박을 이용한 미생물제제의 개발)

  • Joo, Gil-Jae;Kim, Young-Mog;Woo, Cheol-Joo;Lee, Oh-Seuk;Kim, Joung-Woong;So, Jae-Hyun;Kwak, Yun-Young;Lee, Jong-Jin;Kim, Jin-Ho;Rhee, In-Koo
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.201-206
    • /
    • 2005
  • The development of microbial inoculant was conducted using a by-product of oriental herbal medicine. The constituent of the by-product, which was high in organic matter, was 11.3% of crude protein, 5.1% of crude lipid, 49.7% of NDF (neutral detergent fiber), and 33.8% of ADF (acid detergent fiber). Microorganisms isolated from the by-product of oriental herbal medicine were 35 species. Among them, 6 bacterial species, 4 fungal species, 2 actnomycetes species, and 1 yeast species were effective in the utilization of the by-products. The 13 strains screened were tested for the plant growth-promoting effect in soybean seedling. BL-333 strain was found to increase the soybean yield by about 23% as compared with control. The strain BL-333 was identified as Paenibacillus marcerans. P. marcerans BL-333 showed high anti-fungal activities against virulent fungi, especially Fusarium sp. and Collectotrichum sp. Yields of plants which were inoculated with microbial inoculant prepared with P. marcerans BL-333 and by-product of oriental herbal medicine were found to be higher than control by $3{\sim}24%$. The yield was especially promoted in lettuce, radish, chinese cabbage and cucumber plants.

Antimicrobial Activity of the Aerial Part (Leaf and Stem) Extracts of Cnidium officinale Makino, a Korean Medicinal Herb (천궁(Cnidium officinale Makino) 지상부(잎과 줄기) 추출물의 항균활성)

  • Jung, Dong-Sun;Lee, Na-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.30-35
    • /
    • 2007
  • This study was carried out to investigate the usefulness of the aerial part of Cnidium officinale Makino as a bioactive material source. The aerial part(leaf and stem) of Cnidium officinale Makino was extracted with three kinds of solvents and determined their antimicrobial activities against several bacteria and yeast strains using the paper disc method and the microtiter dilution method. The extracts of the Cnidium offocinale aerial part exhibited the broad spectrum of antibacterial activity against Gram (+) and Gram (-) bacteria, including food-borne pathogens such as Listeria monocytogenes, Salmonella typhimurium, and Staphylococcus aureus. The extracts of Cnidium officinale also showed antifungal activity against Saccharomyces cerevisiae. The ethyl acetate extracts completely inhibited the growth of Staphylococcus aureus and Pseudomonas aerogenes, and moderately inhibited the growth of Escherichia coli and Enterobacter cloacae at the concentration of 0.5 mg/mL. However, water extract of Cnidium officinale exhibited lower antimicrobial activity than ethyl acetate and methanol extracts. The inhibitory effect of the ethyl acetate extract of Cnidium officinale Makino was not destroyed by heating at $100^{\circ}C$ for 30 min or at $121^{\circ}C$... for 15 min. These results suggest that the aerial part of Cnidium officinale Makino could be a useful source for a natural antimicrobial material.

The Isolation and Culture Characterization of a Lipolytic Enzyme Producing Strain from Meju (메주로부터 지질분해 효소 생산 균주의 분리 및 배양학적 특성)

  • Yun, Hye-Ju;Lee, You-Jung;Yeo, Soo-Hwan;Choi, Hye-Sun;Park, Hye-Young;Park, Heui-Dong;Baek, Seong-Yeol
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.98-103
    • /
    • 2012
  • For screening of useful enzymes producing microorganisms from Meju, we isolated high lipase producing strains and their lipolytic enzyme activities were then tested. The lipolytic enzyme activities of isolated microorganisms were therefore tested on the Y124 strain. The gene sequence analysis of ITS from Y124 strain revealed Yarrowia lipolytica. Lipase production by the Y124 strain was studied in media containing various carbon sources. The Y124 strain drastically increased lipolytic enzyme activity in YPO media containing olive oil, as well as in YPDO media containing both olive oil and glucose. Maximal lipase production was achieved in YPD (yeast extract-peptone-D-glucose) media containing 0.7% olive oil when cultured at $30^{\circ}C$ for 8 hrs. The lipase produced from the Y124 strain showed the highest activity in p-NPO (p-nitrophenyl octanoate ($C_8$)), amongst the various p-nitrophenyl esters.

Determination of Optimized Growth Medium and Cryoprotective Additives to Enhance the Growth and Survival of Lactobacillus salivarius

  • Yeo, Soyoung;Shin, Hee Sung;Lee, Hye Won;Hong, Doseon;Park, Hyunjoon;Holzapfel, Wilhelm;Kim, Eun Bae;Huh, Chul Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.718-731
    • /
    • 2018
  • The beneficial effects of lactic acid bacteria (LAB) have been intensively investigated in recent decades with special focus on modulation of the host intestinal microbiota. Numerous discoveries of effective probiotics are driven by a significantly increasing demand for dietary supplements. Consequently, technological advances in the large-scale production and lyophilization are needed by probiotic-related industries for producing probiotic LAB for commercial use. Our study had a dual objective, to determine the optimum growth medium composition and to investigate appropriate cryoprotective additives (CPAs) for Lactobacillus salivarius, and compare its responses with other Lactobacillus species. The one-factor-at-a-time method and central composite design were applied to determine the optimal medium composition for L. salivarius cultivation. The following composition of the medium was established (per liter): 21.64 g maltose, 85 g yeast extract, 1.21 ml Tween 80, 6 g sodium acetate, $0.2g\;MgSO_4{\cdot}7H_2O$, $0.02g\;MnSO_4{\cdot}H_2O$, $1g\;K_2HPO_4$, $1.5g\;KH_2PO_4$, $0.01g\;FeSO_4{\cdot}7H_2O$, and 1 g sodium citrate. A cryoprotective additive combination comprising 10% (w/v) skim milk and 10% (w/v) sucrose supplemented with 2.5% (w/v) sodium glutamate was selected for L. salivarius, and its effectiveness was confirmed using culture-independent methods in the freeze-dried cells of the Lactobacillus strains. In conclusion, the optimized medium enhanced the species-specific cultivation of L. salivarius. On the other hand, the cryoprotective effects of the selected CPA mixture may also be dependent on the bacterial strain. This study highlights the necessity for precise and advanced processing techniques for large-scale production of probiotics in the food and feed industries.

Improvement of Kimchi Fermentation by Using Acid-Tolerant Mutant of Leuconostoc mesenteroides and Aromatic Yeast Saccharomyces fermentati as Starters

  • Kim, Young-Chan;Jung, Eun-Youg;Kim, Hyung-Joo;Jung, Dai-Hyun;Hong, Seong-Gil;Kwon, Tae-Jong;Kang, Sang-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.22-31
    • /
    • 1999
  • Saccharomyces fermentati and Leuconostoc mesenteroides were isolated from a traditional kimchi, and then the Leu. mesenteroides was mutated to the acid-tolerant mutant Leu. mesenteroides M-l00. In the result of growth properties in MRS broth with various pHs adjusted with HCl and acid solution (latic acid:acetic acid=1:2), an acid-tolerant mutant Leu. mesenteroides M-100 showed more increased ability for growth than its wild strain at various temperatures. The strains were used as starters for the fermentation of kimchi. The experiments were performed with classified experimental groups (Group I, control kimchi; Group II, addition of YK-19 only; Group III, addition of M-100 only; Group IV, addition of mixture of M-100 and YK-19), and their pH, total acidity, reducing sugars content, organic acid productivity, organoleptic tests, and microfloral changes were compared. As a result, in pH and acidity, the optimal ripening period of Group IV was about 13.5 days (i.e. from the 8.5 to 22 days of fermentation). This result indicates that the optimal ripening period of Group IV was about 1.5 times longer than that of Group I. Furthermore, Group IV was edible to 28 days of fermentation. In addition, high contents of succinc acid was observed in Group IV. Group IV was also highly ranked on the organoleptic test. During the fermentation of kimchi, the number of Leuconostoc sp. in group I reduced after 7 days; however, the number of Leuconostoc sp. in Group II, III, and IV decresed after 14 days of fermentation. An especially high number of Leu. sp. was observed in Group IV, and this gave better flavor of kimchi than any other during the whole fermentation period. Citric acid, tartaric acid, succinic acid, fumaric acid, and lactic acid were detected in the kimchi, and a significant increase in the concentration of lactic acid during fermentation was observed in the all experimental groups.

  • PDF

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.

Culture Conditions for Glucoamylase Production and Ethanol Productivity of Heterologous Transformant of Saccharomyces cerevisiae by Glucoamylase Gene of Saccharomyces diastaticus (Transformant의 Glucoamylase 생성조건과 Ethanol 발효성)

  • Kim, Young-Ho;Jung-Hwn Seu
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.494-498
    • /
    • 1988
  • The optimum conditions for glucoamylase production, and ethanol productivity of the transformant TSD-14 were investigated as compared with the parental strains. The properties of TSD-14 were comparatively similar to the donor S. diastaticus IFO 1046 as regards the conditions of glucoamylase production and ethanol productivity. The soluble starch was the most effective carbon source for the glucoamylase production. While inorganic nitrogen sources did not prompt cell growth and enzyme production, the organic nitrogen sources generally enhanced both cell growth and glucoamylase production. The metal salts such as FeSO$_4$, MgSO$_4$, MnCl$_2$, and NiSO$_4$were favorable to the enzyme production. And the optium temperature and initial pH for glucoamylase production were 3$0^{\circ}C$ and 5. The transformant TSD-14 produced 8.3%(v/v) ethanol from 15% sucrose medium, 4.8%(v/v) ethanol from 15% soluble starch medium, and 7.5%(v/v) ethanol from 15% liquefied potato starch medium. The corresponding fermentation efficiency were 84% , 45% and 70%, respectively.

  • PDF

Studies on Biological Activities of the Polysaccharides and Oligosaccharides of Orostachys japonicus (와송 다당체 및 올리고당류의 생리 활성)

  • Kim Ki Hoon;Kim Eun Young;Kim Yea Oon;Baek Geum Ok;Kim Han Bok;Lee Dong Seok
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.334-341
    • /
    • 2004
  • Polysaccharides were prepared from Orostachys japonicus by extration with hot steam water (OJPl). The OIPl fraction was further purified by Sephadex G-50 gel filtration chromatography to produce FI (polysaccharides) and FII (oligosaccharides) fraction. The average molecular masses o fFI and FII fraction were determined to be 3050 kDa and 13 kDa, respectively. The antimicrobial activity of OIPl was tested against 8 strains of bacteria and one strain of yeast by the disc diffusion method, fluorescein diacetate (FDA) method and broth dilution method. The OIPl exhibited a very strong growth inhibition to Candida albicans. The OIPl remarkably sup­pressed the growth of Salmonella typhimurium and Staphylococcus aureus. The OIPl showed higher growth inhibition to Escherichia coli and Pseudomonas aeruginosa than propolis, positive control. When the anticancer activity of the OIPl, FI or FII was examined against human cancer cell lines and the Sarcoma 180 cells, these widely suppressed the proliferation of cell lines in the MTT assay and morphology study. Especially, they remarkably inhibited the growth of A549, HeLa and AGS cells. Also treatment of cancer cells with OJPl, FI or FII induced apoptotic cell death characterized by DNA fragmentation. The OJPl, FI or FII exhibiting various biological activities such as antimicrobial activity and anticancer activity is expected to be developed as new biohealth products.

Characterization and Isolation of Mutants Involved in Cell Cycle Progression and Regulation in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 세포주기의 진행과 조절에 관련된 변이주들의 분리 및 특성화)

  • 박정은;임선희;선우양일
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.28-36
    • /
    • 2001
  • These studies were carried out to understand the mechanisms of genes which are related in cell cycle progression at G1/S phase. Mutants involved in cell cycle progression and regulation in Saccharomyces cerevisiae were isolated and characterized. To isolate new mutants, we screened the sensitivity to ciclopirox olamine (CPO) which inhibits the cell cycle traverse at or very near the G1/S phase boundary in HeLa cell and budding yeast. As results, we isolated 30 mutants and named cos(ciclopirox olamine sensitivity: cos27∼cos57) mutants. To determine the phenotype of mutants, we examined the sensitivity to methyl-methane sulfonate (MMS) and hydroxyurea (HU). Several mutants were sensitive to MMS and HU. According to these Phenotypes, cos mutants were grouped into four. Group I mutants are cos27, cos28, cos32, cos33, cos36, cos37, cos40, cos42, cos46, cos50, cos52 and cos53 which show MMS, HU sensitivities and might act at a checkpoint pathway during S phase. Group II mutants are cos43 and cos48 which show MMS sensitivities and might act at a checkpoint pathway during Gl or G2 phase. Group III mutants are cos35, cos47, cos54, cos55 and cos56 which show HU sensitivities and might act at a progress pathway during S phase. Finally, Group IV mutants are cos29, cos30, cos31, cos34, cos38, cos39, cos41, cos44, cos45, cos49, cos51 and cos57 which show only CPO sensitivities. Moreover, we examined the terminal phenotype of mutants under fluorescent microscope and then found one of S phase checkpoint related mutant(cos37). Furthermore, we constructed the heterozygote strain between mutant and wild type haploid strains to study their genetic analysis of cos mutants.

  • PDF