• Title/Summary/Keyword: yeast solution

Search Result 193, Processing Time 0.028 seconds

Optical Trapping of Microparticles Using a 790 nm Semiconductor Laser (790 nm의 반도체 레이저를 이용한 미세 입자의 포획)

  • 유석진;이진서;안지수;권남익
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.24-27
    • /
    • 1996
  • We describe the optical trapping of yeast particles of $3~4\mu\textrm{m}$ in water solution using a diode laser operating at 790 nm. The yeast particles are trapped by a laser focus and are moved in 2- or 3-dimensions. This confirms the concept of negative light pressure by the gradient force due to the difference of the index of refractions of solutions and particles. By moving yeast particle vertically to the laser beam axis, we measured the horizontal component of the trapping force and compared it with the laser power.

  • PDF

The Preparation and Identification of Hydrolysis Oligosaccharide from White Copra Meal by Yeast Fermentation and Sunflower Seed Enzymes

  • Park, Gwi-Gun
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.4
    • /
    • pp.179-183
    • /
    • 2000
  • $\beta$-1,4-Mannotriose was prepared b he enzymatic hydrolysis of white copra meal (WCM) and the subsequent elimination of monosaccharides from the resultant hydrolysate with a yeast. The enzyme system from sunflower seed hydrolyzed WCM and produced monosaccharides and $\beta$-1,4-mannotriose without other oligomers at the final stage of the reaction. WCM(50g) was hydrolyzed at 5$0^{\circ}C$ and pH 4.5 for 24 hr with crude enzyme solution (500 mL) from sunflower seed. By the elimination of monosaccharides from the hydrolysis products with a yeast (Candida glaebosa), 8.1 g of crystalline mannotriose was obtained without the use of chromatographic techniques. After 48hr of yeast cultivation, the total sugar content decreased from 4.6% to 3.5%, whereas the average degree of polymerization increased from 2.3 to 3.1.

  • PDF

The Preparation of Crystalline ${\beta}$-1,4-Mannotriose from Poonac Using the Enzyme System and Yeast Fermentation

  • Park, Gwi-Gun
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.818-822
    • /
    • 2005
  • Beta-1,4-mannotriose was prepared by the enzymatic hydrolysis of poonac and the subsequent elimination with yeast of monosaccharides and disaccharide from the resultant hydrolysate. The enzyme system hydrolyzed poonac and produced monosaccharides, disaccharide and ${\beta}$-1,4-mannotriose without other oligomers at the final reaction stage. Poonac (50 g) was hydrolyzed at $50^{\circ}C$ and pH 6 for 48 hr with the crude enzyme solution (500 mL) from Trichoderma harzianum. The elimination of monosaccharides and disaccharide from the hydrolysis products with a yeast (Candida guilliermondii) produced 10.5 g of crystalline [${\beta}$-1,4-mannotriose without the use of chromatographic techniques. After 48 hr of yeast cultivation, the total sugar content fell from 4.8% to 3.4%, and the average degree of polymerization (D.P) rose from 2.5 to 3.2. The preparation method presented was confirmed to be suitable for the preparation of mannotriose from poonac.

The Preparation of Crystalline Mannobiose from Brown Copra Meal Using the Enzyme System and Yeast Fermentation

  • Park, Gwi-Gun;Chang, Hak-Gil
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.3
    • /
    • pp.194-198
    • /
    • 1993
  • ${\beta}-1$, 4-Mannobiose was prepared by the enzymatic hydrolysis of brown copra meal and the subsequent elimination of mono-saccharides from the resultant hydrolysate with a yeast. The enzyme system hydrolyzed brown copra meal and produced monosaccharides and $\beta$-1, 4-mannobiose without other oligomers at the final stage of the reaction. Brown copra meal (30 g) was hydrolyzed at $50^{\circ}^C$ and pH 5 for 48 hr with the crude enzyme solution (300 ml) from Penicillium purpurogenum. By the elimination of monosaccharides from the hydrolysis products with a yeast (Candida parapsilosis var. komabaensis k-75), 5.2 g of crystalline mannobiose was obtained without the use of chromatographic techniques. After 50 hours of yeast cultivation, the total sugar content fell from 3.5% to 2.4%, and the average degree of polymerization rose from 1.8 to 2.2.

  • PDF

Phase Model Analysis of Yeast Glycolytic Oscillation

  • Kim, Won-Sup;Han, Seung-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.78-78
    • /
    • 2003
  • The glycolysis is one of the most important metabolic reactions through which the glucose is broken and the released energy is stored in the form of ATP. Rhythmic oscillation of the intracellular ATP is observed as the amount of the influx glucose is small in the yeast. The oscillation is also observed in the population of the yeast cells, which implies that the glycolytic oscillation of the yeasts is synchronous. It is not clear how the synchronous oscillation could be organized among the yeast cells. Although detailed mathematical models are available that show synchronization of the glycolytic oscillation, the stability of the synchronous oscillation is not clear. We introduce a phase model analysis that reduces a higher dimensional mathematical model to a much simpler one dimensional phase model. Then, the stability of the synchronous oscillation is easily determined by the stability of the corresponding fixed solution in the phase model. The effect of perturbation on the oscillatory rhythm is also easily analyzed in the reduced phase model.

  • PDF

Natural Indigo Dyeing of Hanji Fabric using Baker's Yeast: Effect of Yeast Concentration and Repeat Dyeing (효모를 사용한 한지직물의 천연인디고 염색 : 효모농도와 반복염색 효과)

  • Son, Kyunghee;Shin, Younsook;Yoo, Dong Il
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.191-201
    • /
    • 2021
  • In this study, an eco-friendly indigo reduction system(scale up reduction, use of buffer solution, and pH control) using baker's yeast(Saccharomyces cerevisiae) was applied for natural indigo(Polygonum tinctorium) dyeing of Hanji fabric and Hanji-mixture fabric(Hanji/Cotton, Hanji/Silk). The effect of concentration of baker's yeast, repeat dyeing, and bath reuse was investigated in terms of dye uptake indicating reduction power. And the oxidation-reduction potential(ORP) was monitored. We also evaluated color properties and colorfastness according to the color strength. The yeast concentration did not significantly affect the maximum reduction power. However, the highest yeast concentration was effective in improving the initial dye uptake, and its the reduction retention power was the most excellent. Even on the last reduction day, the effect of increasing the dye uptake by repeat dyeing was observed. And it was confirmed that the reduction bath could be reused for up to 30 days by supplementing yeast at the end of reduction. For all the fabrics used, deeper and darker PB color were obtained by repeat dyeing. As dyeing was repeated, purplish tint got stronger on the Hanji/Silk fabric compared to other fabrics. Regardless of the composition of Hanji fabrics and color strength, washing and dry cleaning fastness were relatively good with above rating 4-5, and fastness to rubbing and light were acceptable with a rating 3-4 ~ 4-5. The eco-friendly natural indigo dyeing process using niram and baker's yeast would offer global marketability and diversity of Hanji product as a sustainable high value-added material.

Wine Production Using Osmotic Solution from Dried Mango Process

  • Garcia, Annalene S.;Park, Jae-Ho;Jeong, Hyung-Jin;Park, Youn-Moon;Chung, Koo-Min;Lee, Jong-Hwa
    • Food Engineering Progress
    • /
    • v.13 no.2
    • /
    • pp.130-137
    • /
    • 2009
  • This study evaluated the potential of utilizing the osmotic solution from dried mango processing as alternative raw material for mango wine making. Fermentation was carried out using two kinds of yeast strains Saccharomyces bayanus, Lalvin EC-1118 and Saccharomyces cerevisiae, Lalvin D-47 at 20$^{\circ}C$ for 28 days. Physicochemical analysis during fermentation was performed for each treatment and the resulting wine samples were analyzed for color, volatiles and sensory properties. Results of physicochemical analysis between the two fermenting samples as well as the wine samples show almost similar results regardless of the yeast strains. Wine color of sample wines after storage were not significantly different at p<0.05 and when compared with a commercial mango wine. From the volatile analysis, esters and alcohols constituted majority of the compounds. Production of several esters, alcohols, acids and terpenes were affected by yeast strain used in fermentation. Results of sensory analysis showed that wines fermented by S. bayanus EC-1118 strain was more acceptable although sensory scores between the treatments and the reference wine showed significant differences in all the attributes evaluated, except for bitterness. The utilization of osmotic solution from dried mango process could produce similar properties with existing commercial mango wines although there is still need for further work on the improvement of some sensory attributes of the mango wines.

Manufacturing Process of Acetic Acid Fermentation Using Deteriorated Candy (폐당(廢糖)을 이용(利用)한 초산발효법(醋酸醱酵法))

  • Kim, Hyun-Oh;Lee, Young Soon
    • Journal of Nutrition and Health
    • /
    • v.13 no.2
    • /
    • pp.104-108
    • /
    • 1980
  • The present dissertation intends to examine whether the use of deterirated candies on the market causes the acetic acid fermentation, and upon scrutiny the result is as follows. 1) 0.5% yeast extract as the sourse of nitrogen is added to 25% candy solution; as a result, the condition of alcoholic fermentation of 8.3% alcohol is favorable. 2) 0.5% yeast extract is added to candy solution after alcoholic fermentation; as a result, 0.2% increase of acidity per hour shows an active acetic acid fermentation of final 6.93%. 3) Acetic acid fermentation by the use of deteriorated candy as sugariness material makes possible up to 90% fermentation ratio through submerged aeration process, and shows 0.092% increase of acidity per hour.

  • PDF

The Effect of Ginseng Saponin on Yeast Alcohol Dehydrogenase (인삼 사포닌이 효모 Alcohol Dehydrogenase에 미치는 영향)

  • 김재원;주충노
    • Journal of Ginseng Research
    • /
    • v.10 no.2
    • /
    • pp.209-217
    • /
    • 1986
  • Yeast alcohol dehydrogenates and ginseng saponin interaction has been investigated to understand the non-specific enzyme stimulating effect of the saponin of Panax ginseng C.A. Meyer. It was confirmed that several amphiphiles such as sodium dodecyl sulfate(SDS), Triton X-100, sodium taurodeoxycholate (Na-TDC) as well as ginseng saponin mixture and purified ginseng glycosides lowered Km values of yeast alcohol dehydrogenase (ADH) for ethanol and NAD in the presence of the above amphiphiles suggesting that the surface activity of the amphiphiles might play a significant role in the ADH catalyzed reactions. Conformational change of yeast alcohol dehydrogenase in the presence of the above amphiphiles at their optimal concentration for the maximum activity was studied. Circular dichroism (C.D) spectrum of yeast ADH showed that the conformational change of the enzyme occurred in the presence of above amphiphiles. Fluorescence data also showed that the hydrophobic area increased in the presence of above amphiphiles. Examination of the interaction between ADH and ginseng saponin using radioactive saponin showed that there might be a very weak interaction between them. From the above results, it was concluded that the non-specific enzyme stimulating effect of the saponin might be due to the change of polarity of the enzyme solution in the presence of the saponin.

  • PDF

Bifurcation analysis of budding yeast cell cycle

  • Nguyen, Cuong;Yoon, Chang-No;Kim, Hak-Yong;Han, Seung-Kee
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.50-56
    • /
    • 2004
  • Bifurcation analysis of cell cycle regulation in the budding yeast is performed basedon the mathematical model by Chen et al [Molecular biology of cell, 11:369-391, 2000]. On the bifurcation diagram, locations of both stable and unstable solutions of the nonlinear differential equations are presented by taking the mass of cell as a controlparameter. Based on the bifurcation diagram, dynamic mechanism underlying the 'start' transition, initiation of a new round of cell cycle, and the 'finish' transition, completion of cell cycle and returning back to the initial state, is discussed: the 'start' transition is a transition from a stable fixed solution for a small mass and to an oscillatory state for a large mass, and the 'finish' transition is a switching back to the stable fixed solution from the oscillatory state. To understand the role of the genes during the cell cycle regulation, bifurcation diagrams for the mutants are compared with that of the wild type.

  • PDF