• Title/Summary/Keyword: yeast plasmid

Search Result 162, Processing Time 0.023 seconds

Molecular Cloning and Analysis of Sporulation-Specific Glucoamylase (SGA) Gene of Saccharomyces diastaticus

  • Kang, Dae-Ook;Hwang, In-Kyu;Oh, Won-Keun;Lee, Hyun-Sun;Ahn, Soon-Cheol;Kim, Bo-Yeon;Mheen, Tae-Ick;Ahn, Jong-Seog
    • Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.35-40
    • /
    • 1999
  • Sporulation-specific glucoamylase (SGA) gene was isolated from genomic library of Saccharomyces diastaticus 5114-9A by using glucoamylase non-producing mutant of S. diastaticus as a recipient. When the glucoamylase activities of culture supernatant, periplasmic, and intracellular fraction of cells transformed with hybrid plasmid containing SGA gene were measured, the highest activity was detected in culture supernatant. SGA produced by transformant and extracellular glucoamylase produced by S. diastaticus 5114-9A differed in enzyme characteristics such as optimum temperature, thermostability, and resistance to SDS and urea. But the characteristics of SGA produced by sporulating yeast cells and vegetatively growing transformants were identical.

  • PDF

Characteristics of Growth and Metal Removal in Recombinant Saccharomyces cerevisiae harboring a Metallothionein Gene (Metallothionein 유전자가 도입된 재조합 Saccharomyces cerevisiae의 생육과 금속제거에 대한 특성)

  • 정동환;김대옥서진호
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.475-481
    • /
    • 1995
  • The effect of metallothionein expression on the metal resistance and removal by recombinant Saccharomyces cerevisiae containing the plasmid pJW9 was investigated. The recombinant strain S. cerevisiae BZ-pJ was constructed by transforming the host strain S. cerevisiae BZ3l-1-7Ba with the gene coding for a metal-binding protein, metallothionein. Introduction of the MT gene yielded an increase in the minimum inhibitory concentration (MIC) of copper more than three times compared with the host strain. The minimum inhibitory concentrations of $Cr^{2+}, Znr^{2+} and Pb^{2+}, $ were not different for the two strains. The recombinant yeast grown in a medium containing 8mM CuSO4 was able to remove copper with a capacity of 18.9mg $Cu^{2+}$/g dry cell. In a mixture of copper and zinc, the presence of copper relieved the toxic effects caused by zinc, resulting in an enhancement of the final cell density and the specific growth rate of the recombinant yeast. The capability to remove copper by the recombinant yeast was linearly proportional to the copper concentrations in the medium. The efficiency of copper removal was rather constant regardless of the initial copper concentrations. The specific removal of zinc was dependent on the zinc concentrations in media, though, and such dependence was not so pronounced as the concentration of copper.

  • PDF

Cell Surface Display of Arylsulfatase Gene from Pseudoalteromonas carageenovora in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Pseudoalteromonas carageenovora 유래 Arylsulfatase 유전자의 표층 발현)

  • Cho, Eun-Soo;Kim, Hyun-Jin;Jung, So-A;Kim, Jeong-Hwan;Kim, Yeon-Hee;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.355-360
    • /
    • 2009
  • In this study, the arylsulfatase gene (astA, 984 bp ORF) from Pseudoalteromonas carrageenovora genome was expressed on the cell surface of S. cerevisiae by fusing with Aga2p linked to the membrane anchored protein, Aga1p. The constructed plasmid, pCTAST (7.1 kb), was introduced to S. cerevisiae EBY100 cell, and yeast transformants on YPDG plate showed the hydrolyzing activity for 4-methylumbelliferyl-sulfate and p-nitrophenyl-sulfate. When S. cerevisiae EBY100/pCTAST was grown on YPDG medium, the arylsulfatase activity of cell pellet reached about 1.2 unit/mL, whereas no extracellular arylsulfatase activity was detected. The DNA ladder in agarose prepared from agar by this recombinant arylsulfatase showed similar resolution and migration patterns with a commercial agarose. This results revealed that arylsulfatase expressed on the cell surface of S. cerevisiae could be applicable to the economic production of electrophoretic-grade agarose.

Cloning and Characterization of Replication Origins from Misgurnus mizolepis (미꾸라지로부터의 복제원점 클로닝 및 그 특성에 관한 연구)

  • Lim Hak-Seob;Kim Moo-Sang;Lee Hyung-Ho
    • Journal of Aquaculture
    • /
    • v.8 no.3
    • /
    • pp.209-220
    • /
    • 1995
  • The nuclear matrix was isolated from Misgumus mizolepis liver nuclei by low salt extraction and restriction enzyme treatment. The structure was digested with proteinase K. After centrifugation, matrix attachment regions (MARs) were obtained by RNase treatment and phenol-chloroform extraction. The result leads to the appearance of smeared bands in the range of about 0.3-15 kb. pURY19 vector was constructed by inserting 2.13 kb Eco47 III fragment of the yeast uracil 3 gene into the unique Ssp I site of pUC19 plasmid vector as a selection marker. This vector is unable to be maintained in Sacrharomyces cerevisiae by itself since it cannot replicate as an extrachromosomal element. Using this system, we attempted cloning the ARS (autonomously replicating sequence) from M. mizelepis to develop an efficient expression vector for the transgenic fish. pURY19N_{l-62}$ were constructed by inserting MARs in pURY19 plasmid vector and transformation of E. coli $DH5\alpha$. Replication origins (ARS) of M. mizolepis were isolated, which enabled the vector to replicate autonomously in S. cerevisiae. The cloned DNA fragments were sequenced by Sanger's dideoxy-chain termination method. All clones were AT-rich. $pURY19N_6$, one of the clones, expecially contained ARS consensus sequence, Topoisomerase II consensus, near A-box and T-box.

  • PDF

Effect of Heat Treatment and Antibiotics on the Growth of Cellulomonas sp. KL-6 (Cellulomonas sp. KL-6의 증식에 미치는 열처리 및 항생물질의 효과)

  • Kwon, Oh-Jin;Chung, Yung-Gun
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.221-225
    • /
    • 1994
  • For producing single cell protein from the agricultural waste, heat treatment and antibiotics on the growth of Cellulomonas sp. KL-6, isolated in rotting leaf and the adjacent soil mixture, were examined. The organism was able to grow until 5 min. at $65^{\circ}C$, 1 min. at $75^{\circ}C$ and 1/4 min. at $85^{\circ}C$ in gradually rising temperatures. It can be Seen that preheating the suspension at $48^{\circ}C$ results in a marked decrease in heat resistance. On heating at temperature of $55^{\circ}C$ for 30 min., strain KL-6 was more resisted in the 0.1 M phosphate buffer when such substrates as casamino acid (1%), yeast extract (1%) or xylose (5%) were added to it whereas this organism was appeared weaker resistances in 0.1 M phosphate buffer when cysteine (0.03 M), sodium citrate (1%) or casein (1%) were in fused into it. Test strain was susceptible to penicillin-G $(1.563\;{\mu}g/ml)$ and ampicillin $(3.125\;{\mu}g/ml)$, but the organism was resisted to kanamycin $(>200\;{\mu}g/ml)$. The treatment of strain KL-6 with sodium dodecyl sulfate (SDS) resulted in the elimination of R-plasmid from the host strain and the elimination rate with SDS $(10{\sim}30\;{\mu}g/ml)$ was about $9.2{\sim}31.2%$, respectively.

  • PDF

Efficient Use of Lactose for Production of the Soluble Recombinant Human Epidermal Growth Factor in Escherichia coli. (대장균에서 lactose를 이용한 수용성 재조합 인간 상피 세포 성장 인자의 생산)

  • 박세철;권태종;고인영;유광현
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.61-67
    • /
    • 1998
  • Recombinant human epidermal growth factor (rhEGF) was produced by E. coli BL2l (DE3) harboring a plasmid pYHB101. The production of rhEGF was 44.5 mg/L when the E. coli BL2l (pYHB101) was cultured at 27$^{\circ}C$ for 48 hr in the modified MBL medium containing 10 $\mu\textrm{g}$/L glucose with 10 $\mu\textrm{m}$ IPTG/lactose induction at 2 hr after inoculation. It was shown that lactose is able to induce the rhEGF expression of E. coli BL2l (pYHB101) with the same efficiency as IPTG. In the batch culture system, when induced with 10 $\mu\textrm{m}$ lactose, E. coli BL2l (pYHB101) produced maximum 45 mg/L of the rhEGF at 28 hr culture in the modified MBL medium containing 10 g/L glucose. In the semi-fed batch culture system, the volumetric yield was 160 mg/L when the culture was added with 0.5% (w/v) lactose and 0.25% (w/v) yeast extract in the late logarithmic phase and 94.3% of rhEGF was secreted as soluble form. However, when the culture was added with them in the early logarithmic phase, the volumetric yield was 120 mg/L and 20.9% of rhEGF was found in cytoplasmic insoluble aggregates. It was found that the addition time of lactose was important for production of soluble rhEGF from E. coli BL21 (pYHB101).

  • PDF

Phenotypic Suppression of Rad53 Mutation by CYC8 (CYC8에 의한 rad53 돌연변이의 표현형 억제에 대한 연구)

  • Park, Kyoung-Jun;Choi, Do-Hee;Kwon, Sung-Hun;Kim, Joon-Ho;Bae, Sung-Ho
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.122-126
    • /
    • 2010
  • RAD53 functions as an effector kinase of checkpoint pathways in Saccharomyces cerevisiae, which plays a central role to regulate many downstream cellular processes in response to DNA damage. It also involves in transcriptional activation of various genes including RNR genes which encode the key enzyme required for dNTP synthesis. In this study, we identified CYC8 as a suppressor for the hydroxyurea sensitivity of $rad53{\Delta}$ mutation. $Rad53{\Delta}$ mutant transformed with a multi-copy plasmid containing CYC8 showed increased hydroxyurea resistance. In contrast, TUP1 which forms a complex with CYC8 did not function as a suppressor. In the case of mutations, both $cyc8{\Delta}$ and $tup1{\Delta}$ suppressed hydroxyurea sensitivity of $rad53{\Delta}$. Since CYC8 can propagate as a prion in yeast, overexpression of CYC8 induced misfolding of the normal CYC8 proteins, resulting in dominant cyc8-phenotype. Therefore, it is suggested that CYC8 can act as a multi-copy suppressor due to its prion property. It was observed that the levels of RNR transcription were increased in the yeast strains containing either multi-copies of CYC8 gene or $cyc8{\Delta}$ mutation, suggesting that the increased level of RNR will elevate the intracellular pools of dNTPs, which, in turn, suppress the phenotype of $rad53{\Delta}$ mutation.

In vitro Translation and Methylation of Iso-1-Cytochrome C from Saccharomyces Cerevisiae

  • Paik, Woon-Ki;Park, Kwang-Sook;Tuck, Martin;Kim, Sang-Duk
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.505.1-505
    • /
    • 1986
  • The gene for iso-1-cytochrome c for Saccharomyces cerevisiae was recloned into a pSP65 vector containing an active bacteriophage SP6 promoter. The iso-1-cytochrome c gene was cloned as an 856 bp Xho 1-Hind III fragment. When the resulting plasmid was digested at the Hind 111 site 279 bases downstream from the termination codon of the gene and transcribed in vitro using SP6 RNA polymerase, full length transcripts were produced. The SP6 iso-1-cytochrome c mRNA was translated using a rabbit reticulocyte lysate system and the protein products analyzed on SDS polyacrylamide gels. One major band was detected by autofluorography. This band was found to have a molecular weight of 12,000 Da and coincided with the Coomassie staining band of apocytochrome c from S. cerebisiae. The product was also shown to be identical with that of standard yeast apocytochrome c on an isoelectric focusing gel. The in vitro synthesized iso-a-cytochrome c was methylated by adding partially purified S-adenosyl-L-methionine . protein-lysine N-methyltransferase (Protein methylase III; EC 2.1.1.43) from S. cerevisiae along with S-adenosyl-L-methionine to the in vitro translation mixtures. The methylation was shown to be inhibited by the addition of the methylase inhibitor S-adenosyl-L-homocysteine or the protein synthesis inhibitor pu omycin. The methyl derivatives in the protein were identified as $\varepsilon$-N-mono, di and trimethyllysine by amino acid analysis. The molar ratio of methyl groups incorporated to that of cytochrome c molecules synthesized showed that 23% of the translated cytochrome c molecules were methylated by protein methylase III.

  • PDF

Cloning of the dextranase gene(lsd11) from Lipomyces starkeyi and its expression in Pichia pastoris.

  • Park, Ji-Young;Kang, Hee-Kyoung;Jin, Xing-Ji;Ahn, Joon-Seob;Kim, Seung-Heuk;Kim, Do-Won;Kim, Do-Man
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.644-648
    • /
    • 2005
  • Dextranase (${\alpha}$-1,6-D-glucan-6-glucanogydrolase:E.C. 3.2.1.11) catalyzes the hydrolysis of ${\alpha}$-(1.6) linkages of dextran. A lsd1 gene encoding an extracellular dextranase was isolated from the genomic DNA of L. starkeyi. The lsd11 gene is a synthetic dextranase (lsd1) after codon optimization for gene expression with Pichia pastoris system. A open reading frame of lsd11 gene was 1827 bp and it was inserted into the pPIC3.5K expression vector. The plasmid linearized by Sac I was integrated into the 5'AOX region of the chromosomal DNA of P. pastoris. The lsd11 gene fragment encoding a mature protein of 608 amino acids with a predicted molecular weight of 70 kDa, was expressed in the methylotrophic yeast P. pastoris by controling the alcohol oxidase-1 (AOX1) promoter. The recombinant lds11 was optimized by using the shake-flask expression and upscaled using fermentation technology. More than 9.8 mg/L of active dextranase was obtained after induction by methanol. The optimum pH of LSD11 was found to be 5.5 and the optimum temperature $28^{\circ}C$.

  • PDF

p53-mediated Inhibitory Mechanism on HIV-1 Tat is Likely to be Associated with Tat-Phosphorylation (p53에 의한 HIV-1 Tat 활성억제와 인산화관련 가능성 연구)

  • Byune, Hee-Sun;Lee, Sang-Gu;Bae, Yong-Soo
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.1
    • /
    • pp.39-52
    • /
    • 1998
  • HIV-1 tat, a strong transactivator, is essential for the HIV-1 replication and AIDS progression. The Tat function is markedly inhibited by human anti-oncogene p53. This work was initiated to identify the p53-associated inhibitory mechanism on tat-mediated transactivation. Inhibitory function of p53 was confirmed by co-transfection of tat-expressing Jurkat cells with LTR-CAT plasmid, or H3T1 cells (LTR-CAT integrated HeLa cells) with different ratio of pSV-tat/pCDNA-p53 plasmids. Results from the direct protein-protein interaction between soluble p53 and tat, and yeast two-hybrid experiments showed that the co-suppression mechanism is unlikely to be due to the direct interaction. CAT activity was not affected by tat in Jurkat cells which were transfected with p53-promoter-CAT or p53-enhancer-CAT, suggesting that the tat-mediated p53 suppression is not directly associated with p53-promoter. Finally, we have tested protein kinase activity in p53-tranfected Jurkat cells, which might phosphorylate HIV-1 tat, resulting in inhibition of tat function. Some of our data lead us to assume that the p53-mediated tat inhibition is likely to be associated with p53-associated, signaling-mediated phosphorylation of tat, resulting in the dysfunction of tat. This study is now under investigation.

  • PDF