• 제목/요약/키워드: yeast cell immobilization

검색결과 12건 처리시간 0.029초

발포성 포도주의 생산에 고정화 효모의 이용 (Using of Immobilized Yeast Cells for the Production of Sparkling Wine)

  • 이용수;이건표;최진상
    • 한국식품저장유통학회지
    • /
    • 제5권2호
    • /
    • pp.186-190
    • /
    • 1998
  • In order to investigate the possible application of immobilized yeast cells in sparkling wine production instead of riddling puns by the traditional method, fermentation characteristics were tested during the sparkling wine fermentation in the bottle using immobilized yeast cells with alginate. The rates of sugar consumption and alcohol production were faster with free cells than those with immobilized cells during the fermentation. The higher concentration of yeast cells and the lower concentration of alginate in the cell immobilization resulted in the faster sugar consumption and alcohol production. It also resulted in the increase of yeast cell concentration released from immobilized beads during the fermentation. However, no differences were shown in the contents of alcohol, residual sugar and CO2 pressure after fermentation. In case concentration of yeast cells released from immobilized beads during bottle fermentation, the higher concentration of alginate had and the lower had.

  • PDF

Yeast cell surface display of cellobiohydrolase I

  • Lee, Sun-Kyoung;Suh, Chang-Woo;Hwang, Sun-Duk;Kang, Whan-Koo;Lee, Eun-Kyu
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.468-472
    • /
    • 2003
  • Recently, genetic engineering techniques have been used to display various heterologous peptides and proteins (enzyme, antibody, antigen, receptor and fluorescence protein, etc.) on the yeast cell surface. Living cells displaying various enzymes on their surface could be used repeatedly as 'whole cell biocatalysts' like immobilized enzymes. We constructed a yeast based whole cell biocatalyst displaying T. reesei cellobiohydrolase I (CBH I ) on the cell surface and endowed the yeast-cells with the ability to degrade cellulose. By using a cell surface engineering system based on ${\alpha}-agglutinin,$ CBH I was displayed on the cell surface as a fusion protein containing the N-terminal leader peptide encoding a Gly-Ser linker and the $Xpress^{TM}$ epitope. Localization of the fusion protein on the cell surface was confirmed by confocal microscopy. In this study, we report on the genetic immobilization of T. reesei CBH I on the S. cerevisiae and hydrolytic activity of cell surface displayed CBH I.

  • PDF

Evaluating Carriers for Immobilizing Saccharomyces cerevisiae for Ethanol Production in a Continuous Column Reactor

  • Cha, Hye-Geun;Kim, Yi-Ok;Choi, Woon Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Mycobiology
    • /
    • 제42권3호
    • /
    • pp.249-255
    • /
    • 2014
  • We evaluated a more practical and cost-effective immobilization carriers for ethanol production using the yeast Saccharomyces cerevisiae. Three candidate materials-rice hull, rice straw, and sawdust-were tested for their cell-adsorption capacity and operational durability. Derivatizations of rice hull, rice straw, and sawdust with the optimal concentration of 0.5 M of 2-(diethylamino)ethyl chloride hydrochloride (DEAE HCl) resulted in > 95% adsorption of the initial yeast cells at 2 hr for DEAE-rice hull and DEAE-sawdust and in only approximately 80% adsorption for DEAE-rice straw. In addition, DEAE-sawdust was found to be a more practical carrier for immobilizing yeast cells in terms of operational durability in shaking flask cultures with two different speeds of 60 and 150 rpm. Furthermore, the biosorption isotherms of DEAE-rice hull, -rice straw, and -sawdust for yeast cells revealed that the $Q_{max}$ of DEAE-sawdust (82.6 mg/g) was greater than that of DEAE-rice hull and DEAE-rice straw. During the 404-hr of continuous column reactor operation using yeast cells immobilized on DEAE-sawdust, no serious detachment of the yeast cells from the DEAE-sawdust was recorded. Ethanol yield of approximately 3.04 g/L was produced steadily, and glucose was completely converted to ethanol at a yield of 0.375 g-ethanol/g-glucose (73.4% of the theoretical value). Thus, sawdust is a promising practical immobilization carrier for ethanol production, with significance in the production of bioethanol as a biofuel.

Preparation of Corncob Grits as a Carrier for Immobilizing Yeast Cells for Ethanol Production

  • Lee, Sang-Eun;Lee, Choon Geun;Kang, Do Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1673-1680
    • /
    • 2012
  • In this study, DEAE-corncobs [delignified corncob grits derivatized with 2-(diethylamino)ethyl chloride hydrochloride ($DEAE{\cdot}HCl$)] were prepared as a carrier to immobilize yeast (Saccharomyces cerevisiae) for ethanol production. The immobilized yeast cell reactor produced ethanol under optimized $DEAE{\cdot}HCl$ derivatization and adsorption conditions between yeast cells and the DEAE-corncobs. When delignified corncob grit (3.0 g) was derivatized with 0.5M $DEAE{\cdot}HCl$, the yeast cell suspension ($OD_{600}$ = 3.0) was adsorbed at >90% of the initial cell $OD_{600}$. This amount of adsorbed yeast cells was estimated to be 5.36 mg-dry cells/g-DEAE corncobs. The $Q_{max}$ (the maximum cell adsorption by the carrier) of the DEAE-corncobs was estimated to be 25.1 (mg/g), based on a Languir model biosorption isotherm experiment. When we conducted a batch culture with medium recycling using the immobilized yeast cells, the yeast cells on DEAE-corncobs produced ethanol gradually, according to glucose consumption, without cells detaching from the DEAE-corncobs. We observed under electron microscopy that the yeast cells grew on the surface and in the holes of the DEAE-corncobs. In a future study, DEAE-corncobs and the immobilized yeast cell reactor system will contribute to bioethanol production from biomass hydrolysates.

에탄올 생산을 위한 효모 Pichia stipitis의 고정화 (Immobilization of Yeast Pichia stipitis for Ethanol Production)

  • 이상은;이지은;김은진;최준호;최운용;강도형;이현용;정경환
    • 생명과학회지
    • /
    • 제22권4호
    • /
    • pp.508-515
    • /
    • 2012
  • Cotton을 효모 세포($Pichia$ $stipitis$)의 고정화 담체로 사용하기 위하여 2-(diethylamino)ethyl chloride hydrochloride (DEAE HCl)로 derivatization 시켰다. 0.5 M DEAE HCl로 처리하였을 때, 효모 세포가 완전히 흡착하였으며, 이것은 DEAE-cotton g 당 101.8 mg의 효모 세포가 흡착하는 것이고, DEAE-cellulose에 효모 세포가 흡착하는 양의 약 6배 이상인 것으로 확인되었다. DEAE-cotton을 이용하여 효모 세포를 고정화하고, 이것을 ethanol 생산에 이용하였을 경우, glucose와 xylose가 포함된 배지에서 단당류에 대한 ethanol 수율로 0.33 정도로 ethanol을 생산 할 수 있다는 것을 실험적으로 확인하였다. 이를 이용하여 lignocellulosic bomass의 가수분해물로부터 bioethanol 생산에 이용될 수 있을 것으로 기대되어진다. DEAE-cotton에서 얻어진 결과는 DEAE-cellulose에서 같은 실험을 실시하여 서로 비교 분석하였다.

Stabile Fermentation of Citric Acid Using Immobilized Saccharomycopsis lipolytica

  • Kim, Eun-Ki;Ronnie S. Roberts
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권2호
    • /
    • pp.130-135
    • /
    • 1991
  • The effects of media composition on citric acid fermentation using surface immobilized Saccharomycopsis lipolytica were studied. The use of the standard medium for these organisms resulted in rapid decrease of citric acid production and a transformation of immobilized cell morphologies from a yeast-type to a mycelium-type. When the standard medium was enriched with vitamins, trace minerals, a growth factor and ammonium to form a Vigorous Stationary Phase (VSP) fermentation type medium, relatively stable citric acid production (10 mg/lㆍh) was obtained. Using the VSP type medium, the surface immobilized cells also retained their yeast-type form.

  • PDF

Brevibacterium lipolyticum 변이주에 의한 1,4-Androstadiene-3, 17-Dione의 생성 (Production of 1,4-Androstadiene-3,17-dione by a Mutant Strain of Brevibacterium lipolyticum)

  • 최인화;이강만
    • 약학회지
    • /
    • 제33권6호
    • /
    • pp.365-371
    • /
    • 1989
  • Microbiological conversion of sterols to 17-ketosteroids has been recognized as a source for commercial preparation of steroidal drugs. In order to develop bacterial strains and process with Brevibacterium lipolyticum IAM 1398 capable of converting cholesterol to 1,4-Androstadiene-3,17-dione (ADD) at about 27% yield, we studied on strain improvement, fermentation condition and whole cell immobilization. By using UV and/or NTG as mutagens, a mutant to convert cholesterol to ADD with higher yield than 60% was selected. Better production of ADD was manifested in the case of maltose used as a supplemental carbon source, and yeast extract or soytone as a nitrogen source. Addition of tween 80 (0.05%) as a surfactant beneficial for increasing the productivity. The optimal initial pH of the medium was 6.5 and optimal culture temperature was $30^{\circ}C$. Whole cell immobilization by using carrageenan, agar, alginate and acrylamide was carried out and the activity of conversion was tested. In the case of carrageenan and agar, immobilized cells were active for at least two cycles of fermentation.

  • PDF

Study of Sugarcane Pieces as Yeast Supports for Ethanol Production from Sugarcane Juice and Molasses Using Newly Isolated Yeast from Toddy Sap

  • Babu, Neerupudi Kishore;Satyanarayana, Botcha;Balakrishnan, Kesavapillai;Rao, Tamanam Raghava;Rao, Gudapaty Seshagiri
    • Mycobiology
    • /
    • 제40권1호
    • /
    • pp.35-41
    • /
    • 2012
  • A repeated batch fermentation system was used to produce ethanol using $Saccharomyces$ $cerevisiae$ strain (NCIM 3640) immobilized on sugarcane ($Saccharum$ $officinarum$ L.) pieces. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Scanning electron microscopy evidently showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 72.65-76.28 g/L in an average value) and ethanol productivities (about 2.27-2.36 g/L/hr in an average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.9-3.25 g/L) with conversions ranging from 98.03-99.43%, showing efficiency 91.57-95.43 and operational stability of biocatalyst for ethanol fermentation. The results of the work pertaining to the use of sugarcane as immobilized yeast support could be promising for industrial fermentations.

새로운 Alginate 고정화 방법에 의한 에탄올 생산 (Ethanol Production by a New Method of Alginate-Immobilization)

  • 김은영;김승욱;김근
    • 한국미생물·생명공학회지
    • /
    • 제21권4호
    • /
    • pp.373-380
    • /
    • 1993
  • When the cells of yeast K35 were immobilized in Ca-alginate gel, cell concentration and viability decreased as alginate concentration increased. Considering the results, 2% (w/v) Ca-alginate concentration would be suitable. Among various concentrations of additives and cross-lin-king agent, the addition of 1.67% (w/v) of bentonite together with 0.33% (v/v) of glutaraldehyde (ABG bead) resulted in the highest ethanol production of 1.8%(w/v), using YPD medium containing 2% glucose. ABG bead seemed to be more resistant to phosphate ion than Ca-alginate bead. 0.33%(w/v) of phosphate was a proper concentration for the ethanol production by ABG bead. Scanning electron microscopic observation depicted that the immobilized cells on the bead surface were coated by alginate gel and that the cells in the internal bead were cross-linked with alginate matrix. When repeated-batch culture was performed with ABG bead for 40 days in a packed-bed reactor, ethanol concentration of about 90~110 g/l-gel was maintained. Cell viability was maintained around 70%, and outgrowing cell concentration was below 6.3% of total cell concentration. Consequently, the results showed that ABG head was a potential carrier for continuous production of ethanol compared to conventional Ca-alginate bead.

  • PDF

효모의 Alginate 고정화에 관한 연구 (Studies on the Immobilization of Saccharomyces cerevisiae for Ethanol Production)

  • 한면수;하상도;정동효
    • 한국미생물·생명공학회지
    • /
    • 제19권4호
    • /
    • pp.390-397
    • /
    • 1991
  • 효모를 Ca-alginate에 고정화하여 회분발효에서 glucose로부터 에탄올을 생산하여 다음의 결과를 얻었다. 100g wet weight/l($4.3 \times 10^9$ cell/l)의 효모를 pH 7.0, 2% 농도의 Ca-alginate에 고정화하였다. 10 beads volume이 에탄올 생산에 최적이었고 30일 (720 시간) 동안 bead의 수명이 지속되었다. 회분식 발효에서 온도안정성은 고정화 효모의 경우 30~$40^{\circ}C$였으며 free cell의 경우 30~$37^{\circ}C$였다. pH 안정성은 pH 4.0~9.0였으며, 에탄올생산 최적 당농도는 15%였다. 최적조건에서 에탄올수율은 0.45, 생산된 에탄올 농도는 67.6g/l 그리고 에탄올 생산성은 1.99g/l.h로 각각 나타났다.

  • PDF