• Title/Summary/Keyword: xylA

Search Result 68, Processing Time 0.046 seconds

Genetic Structure of the phnM Gene Encoding Plant-Type Ferredoxin from Pseudomonas sp. strain DJ77 (Pseudomonas sp. strain DJ77에서 Plant-Type의 Ferredoxin을 암호화하는 phnM 유전자의 구조)

  • Kim, Sungje;Kim, Young-Chang
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.115-119
    • /
    • 1998
  • We cloned the 4.8 kb BglII fragment containing genes downstream pHENX7 from Pseudomonas sp. strain DJ77. The restriction map of the resultant clone, recombinant plasmid pYCS500, was determined. Sequencing analysis of the 465 bp HindIII-ClaI fragment revealed an open reading frame of 282 bp that was then designated phnM. The deduced polypeptide is 93 amino acid residues long with a $M_r$ of 10,008. The PhnM has 37.3-53.9% identity with plant-type ferredoxin proteins such as NahT, XylT, DmpQ, AtdS, PhlG, PhhQ and TbuW and contains the motif similar to well-conserved functional domains of those proteins.

  • PDF

Purification and Characterization of $\beta$-Xylosidase B of Bacillus stearothemophilus No.236 Produced by Recombinant Escherichia coli. (재조합 균주 Escherichia coli가 생산하는 Bacillus stearothermophilus No.236 $\beta$-Xylosidase B의 정제 및 특성)

  • 장욱진;조쌍구;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.297-302
    • /
    • 1998
  • $\beta$-Xylosidase B was produced by Escherichia coli HB101/pKMG12 carrying the xylB gene of Bacillus stearothermophilus No.236 on its recombinant plasmid. The $\beta$-xylosidase B produced was purified by ammonium sulfate fractionation, DEAE-Sepharose CL-6B, Sephacryl S-200 and Superdex 200 HR gel filtration. The purified enzyme showed the highest activity at pH 6.5 and 5$0^{\circ}C$. But, the enzyme was observed to be very sensitive to the pH and temperature of the reaction mixture. The enzyme was activated about 35% of its original activity in the presence of 1 mM of $Mn^{2+}$ but it was completely inhibited by $Ag^{+}$, $Cu^{2+}$and $Hg^{2+}$ions. In contrast with the $\beta$-xylosidase A, the B enzyme was found to have $\alpha$-arabinofuranosidase activity though the activity was fairly low compared with the $\alpha$-arabinofuranosidase produced from the arfI gene of the same Bacillus stearothermophilus. Therefore, $\beta$-xylosidase B is considered to be more suitable than $\beta$-xylosidase A at least for the biodegradation of arabinoxylan. The $K_{m}$ and V$_{max}$ values of the $\beta$-xylosidase B for o-nitrophenyl-$\alpha$-D-xylopyranoside were 6.43 mM and 1.45 $\mu$mole/min, respectively. Molecular mass of the enzyme was determind to be about 54 kDa by SDS-PAGE and 160 kDa by Superdex 200HR gel filtration, indicating that the functional $\beta$-xylosidase B was composed of three identical subunits.s.

  • PDF

Antibiotic Biosynthesis in bldA-like Mutant of Strptomyces coelicolor (Streptomyces coelicolor blAA-like Mutant에서의 항생물질 생합성)

  • Park, Unn-Mee
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.70-77
    • /
    • 1994
  • The author isolated 7 mutant candidates which mapped around cysA (which was 10 o'clock). They were divided into two groups. One of them was located counterclockwise to cysA, and the other was clockwise to cysA. Since bldA was mapped counterclockwise to cysA, the candidate which mapped counterclockwise to cysA was transduced with phage containing wild type bldA gene clone. The candidates might be the alleles of bldA, because they were complemented by bldA clone. However some of such mutants sporulated very well and developed as much pigment as wild type on rich media plate. Their phenotype was not like bld mutant at all on such conditions. There were real antibiotics gene expressions, since transcriptional reporter gene xylE had shown high activities. Majority of the bldA like mutants showed act gene expressions when they were transformed with high copy number plasmid containing actII-ORF4.

  • PDF

Cloning and Characterization of Ginsenoside Ra1-Hydrolyzing ${\beta}$-D-Xylosidase from Bifidobacterium breve K-110

  • Hyun, Yang-Jin;Kim, Bo-Mi;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.535-540
    • /
    • 2012
  • ${\beta}$-D-Xylosidase (E.C. 3.2.1.37) from Bifidobacterium breve K-110, which hydrolyzes ginsenoside Ra1 to ginsenoside Rb2, was cloned and expressed in Escherichia coli. The ($His_6$)-tagged recombinant enzyme, designated as XlyBK-110, was efficiently purified using $Ni^{2+}$-affinity chromatography (109.9-fold, 84% yield). The molecular mass of XylBK-100 was found to be 55.7 kDa by SDS-PAGE. Its sequence revealed a 1,347 bp open reading frame (ORF) encoding a protein containing 448 amino acids, which showed 82% identity (DNA) to the previously reported glycosyl hydrolase family 30 of Bifidobacterium adolescentis ATCC 15703. The $K_m$ and $V_{max}$ values toward p-nitrophenyl-${\beta}$-D-xylopyranoside (pNPX) were 1.45mM and 10.75 ${\mu}mol/min/mg$, respectively. This enzyme had pH and temperature optima at 6.0 and $45^{\circ}C$, respectively. XylBK-110 acted to the greatest extent on xyloglucosyl kakkalide, followed by pNPX and ginsenoside Ra1, but did not act on p-nitrophenyl-${\alpha}$-L-arabinofuranoside, p-nitrophenyl-${\beta}$-D-glucopyranoside, or p-nitrophenyl-${\beta}$-D-fucopyranoside. In conclusion, this is the first report on the cloning and expression of ${\beta}$-D-xylosidase-hydrolyzing ginsenoside Ra1 and kakkalide from human intestinal microflora.

Purification and Characterization of Exo-xylanase from Escherichia coli Cells Harboring the Recombinant Plasmid pMGl (재조합 균주 Escherichia coli가 생산하는 Bacillus stearothermophilus Exo-xylanase의 정제 및 특성)

  • 문애란;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.574-582
    • /
    • 1992
  • Exo-xylanase encoded by the xylA gene of Bacillus stearothermoPhillus was produced from Escherichia coli ]M109 carrying a recombinant plasmid pMGL Synthesis of the enzyme was observed to be cell-associated, and about 94% of the enzyme synthesized was located in the cytoplasmic region. The maximum production was attained when the E. coli strain was grown at $37^{\circ}C$ for 8 hours on the medium containing 0.5% fructose, 1.0% tryptone, 1.0% sodium chloride, and 0.5% yeast extract. The exo-xylanase was purified to homogeneity using a combination of salting out with ammonium sulfate, DEAE-Sepharose CL-6B ion exchange chromatography, Sephadex G-IOO gel filtration, and Sephadex G-150 gel filtration. The' purified enzyme was most active at pH 6.0 and $45^{\circ}C$. $Ca^{2+}$ and $Co^{2+}$ activated the exo-xylanase activity by about 20% while $Ag^{2+}$, $Fe^{2+}$, $Mg^{2+}$ and $Zn^{2+}$ inhibited the enzyme activity by up to 60%. The $K_m$, value on p-nitrophenyl-$\beta$-D-xylanopyranoside was 2.75 mM. The enzyme had a pI value of 4.7. The estimated molecular weight of the native protein was 200,000 daL SDS-polyacrylamide gel electrophoresis analysis suggested that the native enzyme was a trimer composed of three identical 66,000 da!. polypeptides. The purified enzyme efficiently converted all the xylo-oligosaccharides tested to xylose. It was also confirmed that the enzyme split xylans in an exo-manner even though the degree of hydrolysis was fairly low. The xylanolytic enzyme was, therefore, classified to be one of the few bacterial exo-xylanases lacking transferase activity.

  • PDF

The optimization of extraction process on hemicellulose from rice bran (미강유래 식이섬유 헤미셀룰로오스의 추출 공정 최적화)

  • Jung, Ji-Eun;Choi, Yong-Hee
    • Food Science and Preservation
    • /
    • v.15 no.4
    • /
    • pp.532-541
    • /
    • 2008
  • A central composite design was applied to investigate the effects of the independent variables of NaOH concentration(X1) and extraction time(X2) on dependent variables such as Yield(Y1), Xyl/Ara ratio(Y2), uronic acid(Y3), $\beta$-glucan(Y4) and total sugars(Y5) of hemicelluloses separated from rice bran. The Coefficients of determination(R2) in various models ranged from 0.8626 to 0.9319. Yield increased with increased NaOH concentration and extraction time. The optimum extraction conditions were NaOH concentration at 2.45M and extraction time of 24.2 h. Predicted values at the optimized conditions were acceptable, compared with experimental values. The structural characteristics of an optimum hemicellulose extract were explored. As a result, it showed that the surfaces of hemicellulose had a highly irregular reticulated structure. And also it was both small and large molecular particle in the hemicelluloses. Their average molecular weights were in the ranges $235{\sim}240$ kDa and $8.0{\sim}9.4kDa$, respectively.

Bacillus stearothermophilus Acetylxylan Esterase 유전자(estI)의 염기 서열 결정

  • 이정숙;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.23-29
    • /
    • 1997
  • The nucleotide sequence of the estI gene encoding acetylxylan esterase I of Bacillus stearothermophilus was determined and analyzed. The estI gene was found to consist of a 810 base pair open reading frame coding for a polypeptide of 270 amino acids with a deduced molecular weight of 30 kDa. This was in well agreement with the molecular weight (29 kDa) estimated by SDS-PAGE of the purified esterase. The coding sequence was preceded by a putative ribo some binding site 10 bp upsteam of the ATG codon. Further 53 bp upstream, the transcription initiation signals were identified. The putative $_{-}$10 sequence (TCCAAT) and $_{-}$35 seqence (TTGAAT) corresponded closely to the respective consensus sequences for the Bacillus subtiis major RNA polymerase. The G+C content of the coding region of the estI was 51% whereas that of the third position of codone was 60.2%. The N-terminal amino acid sequence of the EstI deduced from the nucleotide sequence perfectly matched the corresponding region of the purified esterase described previously. Comparison with the amino acid sequence of other esterases and lipases reported so far allowed us to identify a sequence, GLSMG at positions 123 to 127 of the EstI which was reported to be the highly conserved active site sequence for those enzymes. The nucleotide sequence of the estI revealed 55.7% homology to that of the xylC coding for the acetylxylan esterase of Caldocellum saccharolyticum.

  • PDF

Cloning of the Bacillus subtilis AMX-4 Xylanase Gene and Characterization of the Gene Product

  • Yoon, Ki-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1514-1519
    • /
    • 2009
  • A gene encoding the xylanase of Bacillus subtilis AMX-4 isolated from soil was cloned into Escherichia coli and the gene product was purified from the cell-free extract of the recombinant strain. The gene, designated xylA, consisted of 639 nucleotides encoding a polypeptide of 213 residues. The deduced amino acid sequence was highly homologous to those of xylanases belonging to glycosyl hydrolase family 11. The molecular mass of the purified xylanase was 23 kDa as estimated by SDS-PAGE. The enzyme had a pH optimum of 6.0-7.0 and a temperature optimum of $50-55^{\circ}C$. Xylanase activity was significantly inhibited by 5 mM $Cu^{2+}$ and 5 mM $Mn^{2+}$, and noticeably enhanced by 5 mM $Fe^{2+}$. The enzyme was active on xylans including arabinoxylan, birchwood xylan, and oat spelt xylan, but it did not exhibit activity toward carboxymethylcellulose or p-nitrophenyl-$\beta$-xylopyranoside. The predominant products resulting from xylan and xylooligosaccharide hydrolysis were xylobiose and xylotriose. The enzyme could hydrolyze xylooligosaccharides larger than xylotriose.

Neutral and Amino Sugars Composition of a Lectin from Maackia fauriei (Maackia fauriei 유래 렉틴의 중성당 및 아미노당 조성)

  • Na, Kwang-Heum;Park, Byung-Tae;Park, Jae-Wan;Han, Kyong-Jin;Park, Hyun-Joo;Kim, Ha-Hyung
    • YAKHAK HOEJI
    • /
    • v.53 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • The glycosylation of therapeutic glycoproteins can affect their efficacy, stability, solubility, and half-life. Analyzing the composition of monosaccharides, such as that of neutral and amino sugars, is the first step for elucidating the structure of glycan attached to glycoproteins. In the present study, neutral and amino sugars of lectin obtained from Maackia fauriei were analyzed using an enzyme-linked lectinsorbent assay (ELLA) and high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Peroxidase-labeled lectins such as concanavalin A, Ricinus communis agglutinin, and soybean agglutinin were used for ELLA, since they specifically bind to the monosaccharide residue most frequently encountered in a glycan. The hydrosylate of lectin was prepared by treatment with trifluoroacetic acid, which resulted in the lectin mainly possessing the N-glycan consisting of 98.1 pmol Fuc, 342.1 pmol GlcN, 51.9 pmol Gal, 678.9 pmol Man, and 330.7 pmol Xyl. The present results demonstrate that ELLA and HPAEC-PAD are very effective methods for rapidly estimating the types and relative amounts of monosaccharides in intact glycoproteins.