• Title/Summary/Keyword: xenotime

Search Result 11, Processing Time 0.016 seconds

Characteristics of Uraniferous Minerals in Daebo Granite and Significance of Mineral Species (대보화강암내 함우라늄 광물의 산출특징과 존재형태의 중요성)

  • 추창오
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2002
  • A mineralogical study was made in order to identify the relationship between uranium content in groundwater and rock chemistry using core rocks recovered from the drilling holes for wells in the Daebo Granite areas. Uraniferous minerals are of primary origin and occur as inclusions in accessory minerals such as zircon, monazite, and xenotime. Since the uraniferous minerals are very small to be 1 ~ 2 $\mu$m in size, it is difficult to distinguish their mineralogical species precisely. The frequent presence of dissolution cavities or dissolved textures in the accessory minerals suggests that uraniferous minerals dissolved partially and contributed to the groundwater chemistry. Because there is no clear relationship between host rocks and groundwater for uranium concentration, mineralogical characteristics of uraniferous minerals, together with aqueous geochemical conditions favorable for uranium dissolution, could play important roles in groundwaster chemistry.

Occurrence of Radioactive Minerals and U-Th Geochemistry of the Weolaksan and Sokrisan Granite in the Central Ogcheon Belt (중부 옥천대 월악산과 속리산 화강암의 방사성 광물 산출상태와 U-Th 지구화학)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.295-310
    • /
    • 2022
  • The Weolaksan and Sokrisan granites yield high SiO2 and alkali (Na2O+K2O) contents and low CaO and P2O5 contents. The Al saturation index is ≥1.3, which indicates that the granites are peraluminous. The mean U and Th contents are 8.3 and 39.3 ppm, respectively, higher than typical Mesozoic granites in South Korea and about twice the global mean for granitic rocks. The causes of such high radioelement contents are related to high degrees of fractionation and the crustal origin of the granites. U- and Thbearing radioactive minerals occur in the granites include zircon, thorite, monazite, xenotime, fergusonite and uraninite. The fact that the mean Th/U ratio of the granites (5.4) is similar to the global average crustal value suggests that the radioelement contents of granite were controlled by the crustal source material. Given the correlation of Zr, Y, and heavy rare earth elements for U and Th, radioelements are more likely hosted by xenotime than zircon and monazite.

REE Mineralization of Quy Hop Area in Nghe An Province, Northern Vietnam (베트남 북부 네안성 뀌홉지역 희토류 광화작용)

  • Lee, Jae-Ho;Jin, Kwang-Min;Heo, Chul-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.193-213
    • /
    • 2018
  • Soil geochemical exploration to check anomalies related to mineralization was carried out targeting around Quy Hop area within Nghe An province, Northern Vietnam. The interval of sampling are horizontal 250 m with 13 line and longitudinal 300 m with 25 line, resulting in 325 soil samples. Based on the result of soil geochemical exploration, the pitting survey was carried out targeting the grid point with high TREO content, resulting in 73 soil samples within 8 pits. The geology of the survey area are consisted of Ban Chieng biotite granite complex intruding Bu Khang formation comprising of schist, gneiss and limestone. In order to elucidate the source rock of monazite and xenotime confirmed from heavy sand, soil geochemical exploration was carried out. By ICP-MS result of soil samples, total REE oxide content of background amount is about 1.4 times of crustal abundance, depleting the light rare earth (about 0.2 times) and enriching the heavy rare earth (about 1.5 times). By ICP-MS result of pit soil samples, we identified TREO more than 1,000 ppm in 6 pits. It may be considered that REE ore bodies may develop in NE-SW direction, compared with the geochemical results of Quy Chau area.

Extractive Metallurgy and Separation Technology of Rare Earth Ores (교토류광석(橋土類鑛石)의 제련(製鍊) 및 분리(分離) 기술(技術))

  • Lee, Man-Seung;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.27-35
    • /
    • 2010
  • Rare earth alloys and compounds are the raw materials for the manufacture of advanced materials. Although domestic monazite ores have been found, there are some difficulties in recovering rare earth from these ores. Rare earth ores are found in few countries and these countries put an embargo on the export of rare earth ores for the protection of their industry. We gathered some information on the hydrometallurgical and pyrometallurgical processes to recover rare earths from bastnasite, monazite, and xenotime which consist of 95% of the total rare earth ores. Since rare earth with the purity more than 6N is needed for use in advanced materials, some separation methods such as fractional crystallization, precipitation, ion exchange, and solvent extraction were introduced.

Geochemistry and REE content of beach sands along the Atticocycladic coastal zone, Greece

  • Papadopoulos, Argyrios
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.955-973
    • /
    • 2018
  • Twenty-eight beach sand samples from the shorelines of Aegean islands adjacent to the plutonic rocks of the Atticocycladic zone were analyzed for major and rare earth element (REE) contents. Results are compared with the adjacent plutonic rocks, in order to determine relative enrichments or depletions and assess the potential for REE exploitation. Among the samples, several are significantly enriched in REE, being deposits of heavy minerals and their concentrations are controlled by the sea waves and local winds. These samples contain Th, U and REE rich minerals such as zircon, xenotime and allanite. The available geochemical characteristics were also used to confirm the parent rocks of the beach sands. The heavy fractions (total, total magnetic and total non-magnetic) of the beach sands are very well correlated with the Heavy REE (HREE) concentrations. Among the minerals of the heavy magnetic fraction, allanite seems to control the REE content in the heavy mineral-enriched samples, while from the heavy non-magnetic fraction, zircon controls mainly the HREE fraction. One site from Mykonos and 3 from Naxos could have potential for REE exploitation as they present the highest ${\Sigma}REE$ and HREE contents than other beach sand placers measured in Greece (Kavala, Sithonia, Maronia, Samothraki, NE Chalkidiki).

옥천대 흑색 점판암의 납 동위원소 연대

  • 정창식;정기영;김현철;최만식;이석훈;강지훈
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.133-133
    • /
    • 2001
  • 우리는 괴산 덕평리 지역의 소위 구룡산층과 대전 추부 지역의 창리층 흑색 점판암에 대한 납 동위원소 연대측정 결과를 보고한다. 덕평리 지역의 흑색 점판암은 270 Ma 내외의 Pb-Pb 연대를 보이고 U-Pb 연대는 정의되지 않는다. 그 Pb-Pb 연대는 같은 시료의 22개 uraninite 입자에 대한 CHIME 연대와 오차범위 내에서 일치한다. 이로 보아 uraninite는 형성 또는 변성작용에 의한 동위원소적 재평형 작용 이후 폐쇄계를 잘 유지하였지만 흑색 점판암이 지질학적으로 최근에 지표에 노출된 이후에는 전암 규모에서 개방계로 거동하였음을 알 수 있다. 박편 미조직 관찰에 의하면 흑색 점판암의 1차광물인 uraninite 외에 풍화기원 2차광물인 uranocircite, francevillite가 관찰된다. 덕평리 지역 흑색 점판암의 최고 변성온도 조건은 50$0^{\circ}C$ 내외이므로 (Kim et al., 2000) uraninite CHIME 연대의 폐쇄온도가 50$0^{\circ}C$ 이상이거나 uraninite의 형성시기와 변성시기 사이에 시간차가 거의 없었다고 판단된다. 덕평리 지역의 U 광화작용 시기는 이번 자료에 의해 고생대 말로 정의될 수 있으나 그 연대가 흑색 점판암의 모물질인 해저 흑색 유기질 퇴적물의 초기 속성작용과 관련 있는지 후기의 변성작용과 관련 있는지에 대해서는 광물학적인 연구가 더 진행되어야 한다. 옥천대 변성퇴적암의 일부가 고생대 말에 퇴적되었을 가능성은 황강리층 역의 xenotime 및 monazite에 대한 CHIME 연대측정 결과 (약 367 Ma; Adachi et al., 1996)에 의해서 지지된다. 추부 지역 흑색 점판암의 Pb-Pb 연대는 170 Ma 내외로서 인접한 쥬라기 화강암의 관입시기를 지시하는 것으로 생각된다. 이는 화강암체로부터의 거리로 볼 때 덕평리 지역과 추부 지역의 시료 채취 위치가 유사하지만 지하 천부에 관입한 백악기 속리산 화강암 (91$\pm$6 Ma, Cheong and Chang, 1997)에 의해서는 덕평리 지역 흑색 점판암의 납 동위원소계가 영향받지 않았다는 점과 대조적이다.

  • PDF

Mineralogy of Beach Sand in Jaeun Island, Shinangun, Chonranamdo (전라남도 신안군 자은도 해빈사의 광물학적 특성)

  • Chae, Soo-Chun;Jung, Jee-Sung;Jang, Young-Nam;Bae, In-Kook;Shin, Hee-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.289-302
    • /
    • 2007
  • Separation process of heavy minerals was performed with sand from Dunjang beach of Jaeundo, Shinangun, Chonnam, and the feasibility study separating heavy minerals was carried out, and their properties were studied. Samples were selected in three parts, which were upper part, middle part and lower part, with depth. Samples of heavy mineral groups separated with the spiral separator were chosen as starting materials, and they were separated with 3 times of table separation. Heavy minerals presenting in this area were ilmenite, zircon, rutile, anatase, monazite, and xenotime. In the results of 3 times of table separation, minor content of quartz, orthoclase, albite and muscovite were existed as gangue minerals. Accordingly, we concluded that additional specific gravity separation was needed. In the results of separation of heavy minerals by hand picking, it was confirmed that heavy minerals had various genesis because of their various roundness and color.

Geochemical exploration for REE occurrence in Nghe An Area within Northern Vietnam (베트남 북부 네안 희토류 산출지의 지구화학탐사)

  • Heo, Chul-Ho;Chung, Ho Tien;Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.599-622
    • /
    • 2012
  • The phase I soil geochemical exploration was carried out targeting around Chau Binh area far from about 14 km with southeastern direction from Quy Chau within Nghe An province. The interval of sampling are horizontal 300 m with 14 line and longitudinal 500 m with 15 line, resulting in 194 soil samples. Based on the result of the phase I soil geochemical exploration, the phase II detailed pitting survey was carried out targeting the grid point with high TREO content, resulting in 56 soil samples within 7 pits. The geology of survey area are consisted of Ban Chieng biotite granite complex and Dai Loc gneissic granite complex intruding Bu Khang formation comprising of schist, gneiss and limestone. Main mineralization in the study area have the characteristics of occurrence with tin, ruby and REE-bearing monazite(about 300 g/t) and xenotime(about 10 g/t) to be thought as occurring at the alteration zone of granite complex. In order to elucidate the source rock of monazite and xenotime confirmed from heavy sand, soil geochemical exploration was carried out. As a analysis result with ICP-MS on the soil samples from the phase I soil geochemical exploration, total REE oxide content of background amount to about 2 times of crustal abundance, enriching the heavy rare earth(about 2 times) and light rare earth(about 1.84 times). As a analysis result with ICP-MS on the soil samples from the phase II soil detailed pit survey, we identified outcrop considering as economic ore body at the grid point 4-7 pit with N40W attitude. As a synthetic consideration on the phase I soil geochemical exploration and phase II detailed pit survey, we tentatively designated areas considering as the extension of economic ore body with REE anomaly. In the near future, we have the plan to carry out the geophysical exploration and test drilling targeting the interval anticipated to the economic ore body.

Geochemical Exploration for Tri Le REE Occurrence in Nghe An Province within Northern Vietnam (베트남 북부 네안성 칠레 희토류 산출지의 지구화학탐사)

  • Heo, Chul-Ho;Ho, Tien Chung;Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.147-168
    • /
    • 2014
  • The soil geochemical exploration was carried out targeting around Tri Le area far from about 30 km with northwestern direction from Que Phong within Nghe An province. The interval of sampling are horizontal 200 m interval with 23 line and longitudinal 300 m with 10 line, resulting in 228 soil samples. Based on the result of the soil geochemical exploration, the detailed pitting survey was carried out targeting the grid point with high TREO content, resulting in 75 soil samples within 7 pits. The geology of survey area are consisted of Ban Chieng biotite granite complex and granitic gneiss intruding Ban Khang formation comprising of quartz schist and marble. Main mineralization in the study area have the characteristics of occurrence with tin, ruby and REE-bearing monazite and xenotime to be thought as occurring at the alteration zone of granite complex. In order to elucidate the source rock of monazite and xenotime confirmed from heavy sand, soil geochemical exploration was carried out. As a analysis result with ICP-MS on the soil samples from the soil geochemical exploration, total REE oxide content of background amount to about 2 times of crustal abundance, enriching the heavy rare earth(about 2 times) and light rare earth(about 1.5 times). As a analysis result with ICP-MS on the soil samples from the soil detailed pit survey, we only identified outcrop considering as economic weathered granite body at the grid point 1-10 pit among 7 pits. As a synthetic consideration on the soil geochemical exploration and detailed pit survey, we tentatively designated Tri Le area as no promising target for REE. In 2014, we have the plan to carry out the soil geochemical exploration targeting the extended economic REE ore body in Quy Chau as project area from 2011 to 2012.

Mineralogy and Geochemistry of Quaternary Fault Gouges in the Southeastern Korean Peninsula (한반도 동남부 제4기 단층 비지의 광물학적 및 지구화학적 연구)

  • 손승완;장태우;김영규
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.85-94
    • /
    • 2002
  • XRF, XRD, EPMA have been used to investigate microstructures and mineralogical changes caused by the faulting and fluids associated with faulting in the Quaternary fault gouge zones at the Sangchon, Ipsil and Wangsan faults located at the southeastern part of the Korean Peninsula. The chemical compositions of faulted rocks and protoliths analyzed by XRF show that the fault gouges are relatively enriched in TiO$_2$, P$_2$O$_{5}$, MgO, and Fe$_2$O$_3$) compared with protoliths, indicating that the fluids associated with faulting were highly activated. XRD results show that the fault gouges predominantly consist of quartz, feldspar, calcite and clay minerals. Clay minerals formed in the gouge zones are mainly composed of smectite characterized by a dioctahedral sheet. Based on EPMA analyses various kinds of sulfide, carbonate, phosphate minerals were identified in the gouge zones and protoliths. Xenotime of grey fault gouge of the Sangchon fault and sulfide minerals of contact andesitic rock of Ipsil fault and contact grey andesitic rock of Wangsan fault were probably formed by inflow of hydrothermal solution associated with faulting prior to the Quaternary. Carbonate minerals of contact andesitic rock and gouge zone of the Ipsil fault were formed by inflow of fluid associated with faulting prior to the Quaternary. They are heavily fractured and have reaction rim on their edge, indicating that faultings and inflow of fluids were highly activated after carbonate minerals were formed. Calcites of Wangsan fault seemed to be formed in syntectonic or posttectonic Quaternary faulting.g.