• Title/Summary/Keyword: x-radiation

Search Result 2,074, Processing Time 0.025 seconds

Effects of Change in Patient Position on Radiation Dose to Surrounding Organs During Chest Lateral Radiography with Auto Exposure Control Mode (자동노출제어장치를 적용한 흉부 측면 방사선검사 시 환자 위치 변화가 주변 장기의 선량에 미치는 영향)

  • Seung-Uk Kim;Cheong-Hwan Lim;Young-Cheol Joo;Sin-Young Yu
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.903-909
    • /
    • 2023
  • The purpose of this study is to compare and analyze the effect of changes in the patient's central position on the exposure dose and image quality of surrounding organs during a chest lateral examination using an Auto Exposure Control(AEC). The experiment was conducted on a human body phantom. A needle was attached to the lower part of the center of the coronal plane of the phantom, and a lead ruler was attached to the lower part of the detector so that the 50 cm point was located at the lower center of the AEC ion chamber. The exposure conditions were 125 kVp, 320 mA, the distance between the source and the image receptor was 180 cm, and the exposure field size was 14 × 17 inches. Only one AEC ion chamber was used at the bottom center, and the density was set to '0' and sensitivity to 'Middle', and the central X-ray was incident vertically toward the 6th thoracic vertebra. With AEC mode applied, the 50 cm point of the needle and lead ruler were aligned and the phantom was moved 5 cm toward the stomach (F5) and 5 cm toward the back (B5), and the dose factor was analyzed by measuring ESD. The ESD of the thyroid gland according to the change in patient center position was 232.60±2.20 μGy for Center, 231.22±1.53 μGy for F5, and 184.37±1.19 μGy for B5, and the ESD of the breast was 288.54±3.03 μGy for Center, F5 was 260.97±1.93 μGy, B5 was 229.80±1.62 μGy, and the ESD of the center of the lung was 337.02±3.25 μGy for Center, F5 was 336.09±2.29 μGy, and B5 was 261.76±1.68 μGy. As a result of comparing the average values of dose factors between each group, the difference in average values was statistically significant (p<0.01), and each group appeared to be independent. As a result of the study, there was no significant difference in the dose to the thyroid, breast, and center of the lung according to the change in the patient's central position, except for the breast (10%) when the patient moved forward about 5 cm. However, movement of about 5 cm posteriorly resulted in an average dose reduction of 23.7%. Additionally, when the patient's central position was moved to the rear, image quality deteriorated.

Feasibility of Pediatric Low-Dose Facial CT Reconstructed with Filtered Back Projection Using Adequate Kernels (필터보정역투영과 적절한 커널을 이용한 소아 저선량 안면 컴퓨터단층촬영의 시행 가능성)

  • Hye Ji;Sun Kyoung You;Jeong Eun Lee;So Mi Lee;Hyun-Hae Cho;Joon Young Ohm
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.3
    • /
    • pp.669-679
    • /
    • 2022
  • Purpose To evaluate the feasibility of pediatric low-dose facial CT reconstructed with filtered back projection (FBP) using adequate kernels. Materials and Methods We retrospectively reviewed the clinical and imaging data of children aged < 10 years who underwent facial CT at our emergency department. The patients were divided into two groups: low-dose CT (LDCT; Group A, n = 73) with a fixed 80-kVp tube potential and automatic tube current modulation (ATCM) and standard-dose CT (SDCT; Group B, n = 40) with a fixed 120-kVp tube potential and ATCM. All images were reconstructed with FBP using bone and soft tissue kernels in Group A and only bone kernel in Group B. The groups were compared in terms of image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Two radiologists subjectively scored the overall image quality of bony and soft tissue structures. The CT dose index volume and dose-length product were recorded. Results Image noise was higher in Group A than in Group B in bone kernel images (p < 0.001). Group A using a soft tissue kernel showed the highest SNR and CNR for all soft tissue structures (all p < 0.001). In the qualitative analysis of bony structures, Group A scores were found to be similar to or higher than Group B scores on comparing bone kernel images. In the qualitative analysis of soft tissue structures, there was no significant difference between Group A using a soft tissue kernel and Group B using a bone kernel with a soft tissue window setting (p > 0.05). Group A showed a 76.9% reduction in radiation dose compared to Group B (3.2 ± 0.2 mGy vs. 13.9 ± 1.5 mGy; p < 0.001). Conclusion The addition of a soft tissue kernel image to conventional CT reconstructed with FBP enables the use of pediatric low-dose facial CT protocol while maintaining image quality.

Utility of the 16-cm Axial Volume Scan Technique for Coronary Artery Calcium Scoring on Non-Enhanced Chest CT: A Prospective Pilot Study (비 조영증강 흉부 CT에서 관상동맥 칼슘스코어 측정을 위한 16 cm 축상 촬영 기법의 유용성: 전향적 탐색적 연구)

  • So Jung Ki;Chul Hwan Park;Kyunghwa Han;Jae Min Shin;Ji Young Kim;Tae Hoon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1493-1504
    • /
    • 2021
  • Purpose This study aimed to evaluate the utility of the 16-cm axial volume scan technique for calculating the coronary artery calcium score (CACS) using non-enhanced chest CT. Materials and Methods This study prospectively enrolled 20 participants who underwent both, non-enhanced chest CT (16-cm-coverage axial volume scan technique) and calcium-score CT, with the same parameters, differing only in slice thickness (in non-enhanced chest CT = 0.625, 1.25, 2.5 mm; in calcium score CT = 2.5 mm). The CACS was calculated using the conventional Agatston method. The difference between the CACS obtained from the two CT scans was compared, and the degree of agreement for the clinical significance of the CACS was confirmed through sectional analysis. Each calcified lesion was classified by location and size, and a one-to-one comparison of non-contrast-enhanced chest CT and calcium score CT was performed. Results The correlation coefficients of the CACS obtained from the two CT scans for slice thickness of 2.5, 1.25, and 0.625 mm were 0.9850, 0.9688, and 0.9834, respectively. The mean differences between the CACS were -21.4% at 0.625 mm, -39.4% at 1.25 mm, and -76.2% at 2.5 mm slice thicknesses. Sectional analysis revealed that 16 (80%), 16 (80%), and 13 (65%) patients showed agreement for the degree of coronary artery disease at each slice interval, respectively. Inter-reader agreement was high for each slice interval. The 0.625 mm CT showed the highest sensitivity for detecting calcified lesions. Conclusion The values in the non-contrast-enhanced chest CT, using the 16-cm axial volume scan technique, were similar to those obtained using the CACS in the calcium score CT, at 0.625 mm slice thickness without electrocardiogram gating. This can ultimately help predict cardiovascular risk without additional radiation exposure.

The Characteristics of Retention and Evapotranspiration in the Extensive Greening Module of Sloped and Flat Rooftops (저토심 경사지붕과 평지붕 녹화모듈의 저류 및 증발산 특성)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.107-116
    • /
    • 2013
  • This study was undertaken to investigate the characteristics of retention and evapotranspiration in the extensive greening module of sloped and flat rooftops for stormwater management and urban heat island mitigation. A series of 100mm depth's weighing lysimeters planted with Sedum kamtschaticum. were constructed on a 50% slope facing four orientations(north, east, south and west) and a flat rooftop. Thereafter the retention and evapotranspiration from the greening module and the surface temperature of nongreening and greening rooftop were recorded beginning in September 2012 for a period of 1 year. The characteristics of retention and evapotranspiration in the greening module were as follows. The water storage of the sloped and flat greening modules increased to 8.7~28.4mm and 10.6~31.8mm after rainfall except in the winter season, in which it decreased to 3.3mm and 3.9mm in the longer dry period. The maximum stormwater retention of the sloped and flat greening modules was 22.2mm and 23.1mm except in the winter season. Fitted stormwater retention function was [Stormwater Retention Ratio(%)=-18.42 ln(Precipitation)+107.9, $R^2$=0.80] for sloped greening modules, and that was [Stormwater Retention Ratio(%)=-22.64 ln(X)+130.8, $R^2$=0.81] for flat greening modules. The daily evapotranspiration(mm/day) from the greening modules after rainfall decreased rapidly with a power function type in summer, and with a log function type in spring and autumn. The daily evapotranspiration(mm/day) from the greening modules after rainfall was greater in summer > spring > autumn > winter by season. This may be due to the differences in water storage, solar radiation and air temperature. The daily evapotranspiration from the greening modules decreased rapidly from 2~7mm/day to less than 1mm/day for 3~5 days after rainfall, and that decreased slowly after 3~5 days. This indicates that Sedum kamtschaticum used water rapidly when it was available and conserved water when it was not. The albedo of the concrete rooftop and greening rooftop was 0.151 and 0.137 in summer, and 0.165 and 0.165 in winter respectively. The albedo of the concrete rooftop and greening rooftop was similar. The effect of the daily mean and highest surface temperature decrease by greening during the summer season showed $1.6{\sim}13.8^{\circ}C$(mean $9.7^{\circ}C$) and $6.2{\sim}17.6^{\circ}C$(mean $11.2^{\circ}C$). The difference of the daily mean and highest surface temperature between the greening rooftop and concrete rooftop during the winter season were small, measuring $-2.4{\sim}1.3^{\circ}C$(mean $-0.4^{\circ}C$) and $-4.2{\sim}2.6^{\circ}C$(mean $0.0^{\circ}C$). The difference in the highest daily surface temperature between the greening rooftop and concrete rooftop during the summer season increased with an evapotranspiration rate increase by a linear function type. The fitted function of the highest daily surface temperature decrease was [Temperature Decrease($^{\circ}C$)=$1.4361{\times}$(Evapotranspiration rate(mm/day))+8.83, $R^2$=0.59]. The decrease of the surface temperature by greening in the longer dry period was due to sun protection by the sedum canopy. The results of this study indicate that the extensive rooftop greening will assist in managing stormwater runoff and urban heat island through retention and evapotranspiration. Sedum kamtschaticum would be the ideal plant for a non-irrigated extensive green roof. The shading effects of Sedum kamtschaticum would be important as well as the evapotranspiration effects of that for the long-term mitigation effects of an urban heat island.