• Title/Summary/Keyword: wound rat

Search Result 151, Processing Time 0.03 seconds

Effects of Red Deer Antlers on Cutaneous Wound Healing in Full-thickness Rat Models

  • Gu, LiJuan;Mo, EunKyoung;Yang, ZhiHong;Fang, ZheMing;Sun, BaiShen;Wang, ChunYan;Zhu, XueMei;Bao, JianFeng;Sung, ChangKeun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.277-290
    • /
    • 2008
  • The process of wound repair involves an ordered sequence of events such as overlapping biochemical and cellular events that, in the best of circumstances, result in the restoration of both the structural and functional integrity of the damaged tissue. An important event during wound healing is the contraction of newly formed connective tissues by fibroblasts. The polypeptide growth factors, like transforming growth factor-${\beta}$(TGF-${\beta}$, insulin-like growth factor I (IGF- I) and epidermal growth factor (EGF), play very important mediator roles in the process of wound contraction. Deer antlers, as models of mammalian regeneration, are cranial appendages that develop after birth as extensions of a permanent protuberance (pedicle) on the frontal bone. Antlers contain various growth factors which stimulate dermal fibroblast growth. They are involved in digestion and respiration and are necessary for normal wound healing and skin health. In order to investigate and evaluate the effects of red deer antlers on skin wound site, the speed of full-thickness skin wound healing and the expression of IGF-I, TGF-${\beta}$ and EGF in skin wounds, three groups of skin full-thickness rat models with a high concentration of antler ointment, a low concentration of antler ointment and without antler ointment were compared. At post-injury days 0, 2, 4, 8, 16, 20, 32, 40 and 60, the skin wound area was measured, the expressions of IGF-I, TGF- ${\beta}$ and EGF mRNA were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and collagen formation by sirius red dye and the localization of IGF-I, TGF-${\beta}$ and EGF peptides were inspected by histological immunohistochemical techniques. Wound healing was significantly more rapid in antler treated skins. In addition, the wound treated with a high concentration antler ointment, a low concentration antler ointment, and the control closed completely at post-injury day 40, day 44 and day 60, respectively. Via RT-PCR, the expressions of IGF-I (day 8 and day 16), TGF-${\beta}$(day 8, day 16 and day 20) and EGF (day 4, day 8, day 16, and day 32) were obviously up-regulated in high concentration antler-treated skins compared to control skins. Similar results could be seen in the histological detection of collagen dye and immunohistochemical methods using the corresponding polyclone antibodies of IGF-I, TGF-${\beta}$ and EGF. These results illustrate that antlers stimulate and accelerate the repair of cutaneous wounds.

Silk fibroin/hyaluronic acid blend sponge accelerates the wound healing in full-thickness skin injury model of rat (전층피부창상에서 실크피브로인과 하이알론산 혼합 스폰지의 창상치유효과)

  • Kang, Seuk-Yun;Roh, Dae-Hyun;Kim, Hyun-Woo;Yoon, Seo-Yeon;Kwon, Young-Bae;Kweon, HaeYong;Lee, Kwang-Gill;Park, Young-Hwan;Lee, Jang-Hern
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.4
    • /
    • pp.305-313
    • /
    • 2006
  • The primary goal of the wound healing is rapid wound closure. Recent advances in cellular and molecular biology have greatly expanded our understanding of the biologic processes involved in wound repair and tissue regeneration. This study was conducted to develop a new sponge type of biomaterial to be used for either wound dressing or scaffold for tissue engineering. We designed to make a comparative study of the wound healing effect of silk fibroin/hyaluronic acid (SF/HA) blend sponge in full-thickness dermal injury model of rat. Two full-thickness excisions were made on the back of the experimental animals. The excised wound was covered with either the silk fibroin (SF), hyaluronic acid (HA) or SF/HA (7 : 3 or 5 : 5 ratio) blend sponge. On the postoperative days of 3, 7, 10 and 14, the wound area was calculated by image analysis software. Simultaneously, the tissues were stained with Hematoxylin-Eosin and Masson's trichrome methods to measure the area of regenerated epithelium and collagen deposition. In addition, we evaluated the degree of the epithelial cell proliferation using immunohistochemistry for proliferating cell nuclear antigen (PCNA). We found that the half healing time ($HT_{50}$) of SF/HA blend sponge treated groups were significantly decreased as compared with either those of SF or HA treatment group. Furthermore, SF/HA blend sponges significantly increased the size of epithelialization and collagen deposition as well as the number of PCNA positive cells on epidermal basement membrane as compared with those of control treatment. Especially, the 5 : 5 ratio group of SF/HA among all treatment groups was most effective on wound healing rate and histological studies. These results suggest that SF/HA blend sponges could accelerate the wound healing process through the increase of epithelialization, collagen deposition and basal cell proliferation in full thickness skin injury.

The effect of low energy laser irradiation on wound healing (저에너지 레이저 조사가 창상치유에 미치는 영향)

  • Han, Chang-su;Kim, Myung-cheol
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.3
    • /
    • pp.629-637
    • /
    • 1997
  • This study was performed to determine the optimal dose of laser energy for wound healing. The skin wound with 8mm diameter was induced over the lumbar vertebrae of the rats, and wound squares, scab hardness, hematologic findings and histopathlogic findings according to irradiation of laser energy were studied. 1. Wound square was significantly reduced at Day 1 (p<0.01), 2 (p<0.01), 3 (p<0.05), 7 (p<0.01) and 8 (p<0.05), respectively in experimental groups, especially group II, compared with control group. 2. Scab hardness was significantly increased at Day 1 (p<0.01), 2 (p<0.01), 3 (p<0.05), 5 (p<0.01) and 7 (p<0.01), respectively in experimental groups, especially group II, compared with control group. 3. In hematological findings, red blood cells and white blood cells in experimental group were increased according to the lapse of days, but they were not significant. 4. In histopathologic findings, experimental groups, especially group II, revealed early scab formation, early appearance of phagocytes and fibroblast, rapid growth of granulation tissue and collagen, and promotion of wound healing in the result.

  • PDF

Fabrication of Antimicrobial Wound Dressings Using Silver-Citrate Nanorods and Analysis of Their Wound-Healing Efficacy

  • Park, Yong Jin;Jeong, Jisu;Kim, Jae Seok;Choi, Dong Soo;Cho, Goang-Won;Park, Jin Seong;Lim, Jong Kuk
    • Journal of Integrative Natural Science
    • /
    • v.12 no.2
    • /
    • pp.47-57
    • /
    • 2019
  • Staphylococcus epidermidis is well-known not only as an innocuous normal flora species commonly isolated from human skin, but also as an important bacterial species to keep skin healthy, because this species can protect the human skin from pathogenic microorganisms. However, S. epidermidis turns into a potential pathogen in damaged skin, because these bacteria can easily form a biofilm on the wound area and provide antimicrobial resistance to other microorganisms embedded in the biofilm. Thus, it is important to kill S. epidermidis in the early stage of wound treatment and block the formation of biofilms in advance. In the present study, hydrogel wound dressings were fabricated using polyvinyl alcohol/polyethylene glycol containing silver citrate nanorods, which have been proven to have strong antimicrobial activity, especially against S. epidermidis, and their wound-healing efficacy was investigated in vivo using a rat experiment.

ULTRASTRUCTURAL STUDY OF THE FIBROBLAST REMODELING IN THE RADIATION- IMPAIRED WOUND HEALING IN THE TONGUE OF THE RAT (방사선조사가 설의 개방성창상치유에서 섬유아세포의 재형성에 미치는 영향에 관한 연구)

  • Lee Jin-Koo;Choi Soon-Chul;Park Tae-Won;You Dong-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.27 no.1
    • /
    • pp.141-165
    • /
    • 1997
  • Radiation-impaired wound healing in animal experiments was believed to be an another logical experimental model to understand the wound healing mechanism in patients. The purpose of this study was to reveal the block point which would result in impaired healing. Twenty four rats(Sprague-Dawley strains) were divided into two groups according to the time interval between irradiation and wounding. Group I, observing the healing effect on the 1st day and Group II are the healing effects on the 7th days after irradiation to the wound of the rat tongue. Experimental animals were sacrificed 3, 6, 12, and 24 hours after wounding. The specimens were examined by the light microscope and transmission electron microscope. The following results were obtained 1. Fibroblasts in both groups showed degenerative changes which were dilated mitochondria and rER, reduced microorganelle, vacuoles and little cytoplasmic process. 2. Average length between bands and Quantity of the newly produced collagen fibers around fibroblasts remained unchanged against control group. 3. The severity of degenerative change of the fibroblast and impairment of wound healing including shortening of the thickness of collagen fibers were more severe in the group II than in the group I.

  • PDF

Acceleration of Wound Healing and Collagen Deposition in Rat Skin by High Voltage Pulsed Current Stimulation (고전압맥동전류자극이 흰쥐 피부 창상치유와 교원질 축적에 미치는 효과)

  • Lee Jae-hyoung;Song In-young;Kim Jong-Gyu
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.1-12
    • /
    • 2003
  • The purpose of this study was to investigate the effect of high voltage pulsed current stimulation (HVPCS) on the healing rate of a dermal wound in a rat. We also determined the mechanism of promoting healing by HVPCS. Twenty male Sprague-Dawley rats were randomly divided into two group; HVPCS group (n=10) and control group (n=10). The HVPCS rats received electrical stimulation with a current intensity of 50 V at 100 pps for a duration of 30 minutes, while the control group was given the same treatment without electricity for a week. The biopsy specimens were fixed in formalin, embedded in paraffin and stained with Masson's trichrome, hematoxylin and eosin (H&E). The fibroblasts and collagen density were counted using a light microscope and computerized image analysis system and calculated as the density and the percent. A Student t-test showed a significantly higher wound healing rate of the HVPCS group than control (t=-4.161, p<0.001). The fibroblasts in the HVPCS group were higher than in the control group (t=-4.921, p<0.001). The density of collagen in the HVPCS group was also higher than in the control group (t=-4.367, p<0.001). These results indicate that the HVPCS accelerated the rate of healing in dermal wound, and increased fibroblasts and collagen density in the regenerative dermis. These findings suggest that the HVPCS may activate fibroblasts by alteration of the electrical environment, and it may increase collagen synthesis in the regenerative dermal wound.

  • PDF

An Experimental Study on the Effects of Triamcinolone Acetonide on the Wound Healing of Rat Tongue (Triamcinolone acetonide가 설 창상치유에 미치는 영향에 관한 실험적 연구)

  • 김능세;이승우
    • Journal of Oral Medicine and Pain
    • /
    • v.7 no.1
    • /
    • pp.5-26
    • /
    • 1982
  • In order to study the effects of traimcinolone acetonide on the wound healing of tongue, eight two healthy albino rats were asesthetized with pentothal. The wound, approximately 1mm in depth and 2mm in diameter, was created on the midlateral aspect of tongue with the tip of small rongeur fourcep. Forty one animals were employed in one of the following groups:(I) Control group: Received 0.5ml/100gm B.W. of saline suspension intralesionally at weekly interval until sacrificed.(II) Experimental group: Received $100\mu\textrm{g}/100gm$ B.W. of trimacinolone acet- onide suspension intralesionally at weekly interval until sacrificed. Biopsy specimens of wounds were taken at 6,18,24 hours, 2,3,5,7,14 and 28 days after wounding. The specimens were sectioned, and observed with light microscope and electron microscope. The results were as follows : 1. In the triamcinolone acetonide treated wound, the epithelial and fibroblastic regeneration were dealayed when compared with controls. 2. After triamcinolone acetonide treated, edema was decreased at the early stage of wound healing. 3. In the triamcinolone acetonide treated wound, the fibroblasts exhibited fine morphological changes and reduction of collagen formation. It seems that triamcinolone acetonide inhibits fibroblast function.

  • PDF

Effect of Transplantation of Human Bone Marrow Stromal Cells or Dermal Fibroblasts on Wound Healing (인간 골수기질세포 또는 진피섬유모세포의 이종이식이 흰쥐의 창상치유속도에 미치는 영향)

  • Han, Seung-Kyu;Choi, Won Il;Lee, Byung Il;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.34 no.4
    • /
    • pp.426-431
    • /
    • 2007
  • Purpose: The aim of this study is to compare the effects of bone marrow stromal cells(BSCs) and fibroblasts on wound healing activity in vivo, especially on epithelization. Methods: The fibroblasts and BSCs were harvested from patients and cultured. Ten Spague-Dawley white rats were used. A 5 mm punches were made to excise skin and subcutaneous tissue in a round fashion at six sites on the back area of each rat. Four hundred thousand cells suspended in 0.05 ml fibrinogen were applied to the created wounds. The cells in group I, II, and III were no cells, fibroblasts and BSCs. The lengths of epithelial gap at the widest wound site were compared with autopsy specimens obtained on the 6th day after cell therapy under light microscope. Statistical comparisons were performed using the Mann-Whitney U-test, and the p value < 0.05 was considered statistically significant. Results: The best epithelization was also seen in the BSC group, followed by fibroblast and no cell groups.Conclusion: These results demonstrate that BSC has superior effect on stimulating wound healing than fibroblast, which is currently used for wound healing.

Promotion of excisional wound repair by a menstrual blood-derived stem cell-seeded decellularized human amniotic membrane

  • Farzamfar, Saeed;Salehi, Majid;Ehterami, Arian;Naseri-Nosar, Mahdi;Vaez, Ahmad;Zarnani, Amir Hassan;Sahrapeyma, Hamed;Shokri, Mohammad-Reza;Aleahmad, Mehdi
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.393-398
    • /
    • 2018
  • This is the first study demonstrating the efficacy of menstrual blood-derived stem cell (MenSC) transplantation via decellularized human amniotic membrane (DAM), for the promotion of skin excisional wound repair. The DAM was seeded with MenSCs at the density of $3{\times}10^4cells/cm^2$ and implanted onto a rat's $1.50{\times}1.50cm^2$ full-thickness excisional wound defect. The results of wound closure and histopathological examinations demonstrated that the MenSC-seeded DAM could significantly improve the wound healing compared with DAM-treatment. All in all, our data indicated that the MenSCs can be a potential source for cell-based therapies to regenerate skin injuries.