• Title/Summary/Keyword: working gas

Search Result 708, Processing Time 0.026 seconds

Feasibility Study of IEEE 802.15.4 LR-WPAN to the Real-time Voice Application (IEEE 802.15.4 LR-WPAN의 실시간 음성 데이터 응용에 대한 적용 가능성 연구)

  • Hur, Yun-Kang;Kim, You-Jin;Huh, Jae-Doo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.2
    • /
    • pp.82-94
    • /
    • 2007
  • Wireless sensor networking technology is one of the basic infrastructures for ubiquitous environment. It enables us to gather various sensory data such as temperature, humidity, gas leakage, and speed from the remote sensor devices. To support these networking functions, IEEE WPAN working group makes standards for PHY and MAC, while ZigBee Alliance defines the standards for the network, security, and applications. The low-rate WPAN was emerged to have the characteristics of network resilience, low cost, and low power consumption. It has a broad range of applications including, but not limit to industrial control and monitoring, home automation, disaster forecast and monitoring, health care. In order to provide more intelligent and robust services, users want voice-based solutions to accommodate to low-rate WPAN. In this paper, we have evaluated voice quality of an IEEE 802.15.4 standard compliant voice node. Specifically, it includes the design of a voice node and experiments based on the prediction of voice quality using the E-model suggested by ITU-T G.107, and the network communication mechanisms considering beacon-enabled and nonbeacon-enabled networks for real-time voice communications.

  • PDF

New Ignition Method and Ignition Recognition Logic for a Microturbine (마이크로터빈의 새로운 점화 기법과 점화 인식 로직 개발)

  • Kim, Gi-Rae;Choi, Young-Kyu;Rho, Min-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.179-186
    • /
    • 2007
  • This paper presents new ignition method and ignition recognition logic for a microturbine. New ignition method is designed by constant speed control of a microturbine with pre-determined time during a ignition period. It make more accurate air-fuel ratio as well as give enough time to ignition system to have full performance under cold temperature. And ignition recognition logic is designed by observing output current change of inverter by generating output torque of a microturbine in the instant of ignition. For filtering a output torque current of inverter with high frequency, we applied a moving average method. So far, ignition recognition is usually implemented by measuring of exhausted gas temperature(EGT) of microturbine. The proposed logic can give more accurate judgement of ignition as well as keep a good working of starting system under out of order a temperature measuring system and biased initial value of EGT sensor. Finally, the two proposed logics are proved by field operating a microturbine under various conditions.

Performance analysis of an organic Rankine cycle for waste heat recovery of a passenger car (승용차 폐열 회수용 유기 랭킨 사이클 성능 분석)

  • Kim, Hyun-Jin;Moon, Je-Hyeon;Yu, Je-Seung;Lee, Young-Sung
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Applicability of organic Rankine cycle for a passenger car with 3.5 L gasoline engine to convert low grade waste heat to useful shaft power has been numerically studied. Working fluid is R134a, and the Rankine cycle is composed of boiler for recovering engine cooling water heat, super heater for recovering exhaust gas heat, scroll expander for converting waste heat to shaft power, condenser for heat emission, internal heat exchanger, and feed pump. Assuming efficiencies of 90% for the heat exchangers, 75% for the scroll expander, and 80% for the feed pump, the Rankine cycle efficiency of 5.53% was calculated at the vehicle speed of 120 km/hr. Net expander shaft output after subtracting the power required to run the pump was 3.22 kW, which was equivalent to 12.1% improvement in fuel consumption. About the same level of improvement in the fuel consumption was obtained over the vehicle speed range of 60 km/hr~120 km/hr.

Development of Variable Deposition Manufacturing for Ethylene Vinyl Acetatecopolymer (EVA를 이용한 가변 용착 쾌속 조형 공정 개발)

  • 이상호;신보성;정준호;안동규;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.771-774
    • /
    • 2000
  • RP techniques have inherent disadvantages caused by their working principles: stair-stepped surface of parts due to layer-by-layer stacking of layers, low build speed caused by line-by-line solidification to finish one layer, and post processing to improve surface finish, etc. The objective of this study is to propose a new RP technique, variable deposition manufacturing (VDM), which can make up for the disadvantages of the existing RP techniques, and to develop an apparatus to implement the technique. The proposed process can greatly reduce the building time and improve the surface finish of parts generated. The experiments are carried out to obtain the range of temperature of molten material to maintain its fluidity and to investigate the effect of gas cooling on the preservation of the slopes. Based on the results, some simple shapes such as a line-shape. an S-shape, and a circle-shape were fabricated from Ethylene Vinyl Acetatecopolymer (EVA). In order to examine the applicability of VDM to more general shapes, a tensile specimen and a yo-yo shape were manufactured by the proposed RP method using EVA material as the first trial approach. The present basic study has shown the possibility of a practicable utilization of the proposed VDM process to prototyping of a general three-dimensional shape.

  • PDF

Hearts of Darkness: Rethinking the Role of Supermassive Black Holes in Galaxy Evolution

  • Zabludoff, Ann
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.31.1-31.1
    • /
    • 2018
  • While astronomers are working hard to detect the earliest galaxies and to follow their evolution to redshift z~0, they remain baffled by the present-day dichotomy between disky, star forming (aka late-type) galaxies and quiescent, spheroidal (aka early-type) galaxies. The key is to find galaxies in transition from one class to the other, whose spectra indicate intense recent star formation that has now ended. We have identified thousands of such "post-starburst galaxies" and discovered that they are often the products of late-type galaxy-galaxy mergers. Their current kinematics, stellar populations, and morphologies are consistent with late- to early-type galaxy evolution. I will discuss recent work that suggests new connections between this violent history and the central supermassive black hole. In particular, the molecular gas reservoir of a post-starburst galaxy declines rapidly after the starburst ends and in a manner consistent with feedback from an active nucleus. Furthermore, a star is ~300x more likely to be tidally disrupted by the nucleus of a post-starburst galaxy than in other galaxies. Like the well-known black hole-bulge mass correlation, these surprising links between the properties of a galaxy on kpc scales and its supermassive black hole on pc scales require explanation.

  • PDF

Development of CNG/Gasoline Bi-fuel engine for a small truck and the evaluation of engine performance (소형 트럭용 CNG/가솔린 겸용 엔진 개발과 성능 분석)

  • Kwon, O-Woon;Kim, Jae-Soo;Park, Yong-Kook;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.21-28
    • /
    • 2006
  • A diesel truck of 1 ton is re-powered by a gasoline engine and the fuelling system of gasoline engine modified to gasoline/CNG bi fuel system. The engine characteristics such as fuel economy and power are evaluated by driving rest, sloping test and dynamometer. The driving test prove the driving cost is saved by 55% and the maximum speed is raised by 13%, which is mainly due to the higher calorific value of CNG. The sloping test is done on the road of which slope is 15%. The truck shows the mean velocity of 88km/h, which means that a re-powered truck is working fine. The BHP are measured by dynamometer. The power and torque produced by a re-powered truck are reduced by 13% and 14% respectively from the power of gasoline engine. The BHP reduction is one of main problems which one has to solve in near future.

  • PDF

A study on market predictions of eco ship's engine and machinery

  • Lee, Kang Ki;Doh, Deog Hee;Kim, Ue Kan;Moon, Hyun Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1354-1359
    • /
    • 2014
  • A survey is carried out for the future energy sources to be used for ship's propulsion and ship's machinery and operations. 44 global experts from Korea, America, Norway, Denmark, Japan and German who are currently working in the shipyard and offshore fields participated at the survey. Quantitative predications on the market shares of various energy sources, such as oil, LNG, fuel cell, wind energy, solar energy and nuclear energy are made. MPI (market prediction index) is considered as a quantitative index for easy comparison between future's energy sources used for ship's propulsion and operations. It is expected that the MPI of LNG becomes twofold in 2020 against 'before 2016'. It could be also said that hydrogen based fuel cell is expected to increase rapidly for the coming years unless a new alternative energy appears.

Generation and Application of Atmospheric Pressure Glow Plasma in Micro Channel Reactor (마이크로 채널 반응기 내 상압 글로우 플라즈마 생성 및 응용)

  • Lee, Dae-Hoon;Park, Hyoun-Hyang;Lee, Jae-Ok;Lee, Seung-S.;Song, Young-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1869-1873
    • /
    • 2008
  • In this work, to make it possible to generate glow discharge in atmospheric pressure condition with relatively high and wide electric field, micro channel reactor is proposed. Si DRIE and Cr deposition by Ebeam evaporation is used to make channel and bottom electrode layer. Upper electrode is made from ITO glass to visualize discharge within micro channel. Fabricated reactor is verified by generating uniform glow plasma with N2 / He gases each as working fluid. The range of gas electric field to generate glow plasma is from about 200 V/cm and upper limit is not observed in tested condition of up to 150 kV/cm. This data shows that micro channel plasma reactor is more versatile. Indirect estimation of electron temperature in this reactor can be inferred that the electron temperature within glow discharge in micro reactor lies $0{\sim}2eV$. This research demonstrates that the reactor is appropriate in application that needs to maintain low temperature condition during chemical process.

  • PDF

X-ray Radiation from Pulsed Discharge Plasma (펄스형 방전플라스마에서 발생하는 X선 측정)

  • Choi, Woon-Sang;Moon, Byeong-Yeon;Kwak, Ho-Won
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.4
    • /
    • pp.311-315
    • /
    • 2006
  • We investigated X-ray radiated from the pulsed Plasma Focus device that translated from electric energy into electromagnetic wave by electric discharge. X-ray radiation is analysed by using pin photodiode and 0.5mm pinhole camera shielded by $25{\mu}m$ Be. The condition of X-ray radiation was that the discharging voltage was 15 kV and the working gas were 0.12 torr Argon. Reproducibility of X-ray radiation is investigated and X-ray temperature is calculated above 3keV.

  • PDF

COMPUTATIONAL STUDY OF GLASS FIBER DRAWING PROCESS IN A DRAW FURNACE OF OPTICAL FIBER MASS MANUFACTURING SYSTEM (광섬유 대량생산용 인출퍼니스 내 유리섬유 인출공정의 전산해석)

  • Kim, K.;Kwak, H.S.;Kim, D.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.69-73
    • /
    • 2013
  • Mass manufacturing of optical fiber includes the process of very thin glass fiber drawing by heating and softening the high purity silica preform and applying the draw tension on the softened tip of preform neck-down profile in a draw furnace. In this computational study, this process is numerically modeled with simplified geometry of the draw furnace which is comprised of essential parts such as concentric graphite heater, muffle tube, and insulation surrounding the heater. The iterative computational scheme is employed between one-dimensional model of neck-down profile prediction and two-dimensional axisymmetric thermo-fluid CFD computation of radiative heating and working gas convection. The computational results show the experimentally observed neck-down profile in heated section of preform, while yielding the reasonable values of draw tension and heater wattage. Also, this study analyzes and discusses the effects of heating conditions such as heater length and temperature on several important aspects of glass fiber drawing process.