Journal of the Korea Society of Computer and Information
/
v.23
no.2
/
pp.63-70
/
2018
Safety management agent manages the risk behavior of the worker with the naked eye, but there is a real difficulty for one the agent to manage all the workers. In this paper, IoT device is attached to a harness safety belt that a worker wears to solve this problem, and behavior data is upload to the cloud in real time. We analyze the upload data through the deep learning and analyze the risk behavior of the worker. When the analysis result is judged to be dangerous behavior, we designed and implemented a system that informs the manager through monitoring application. In order to confirm that the risk behavior analysis through the deep learning is normally performed, the data values of 4 behaviors (walking, running, standing and sitting) were collected from IMU sensor for 60 minutes and learned through Tensorflow, Inception model. In order to verify the accuracy of the proposed system, we conducted inference experiments five times for each of the four behaviors, and confirmed the accuracy of the inference result to be 96.0%.
Proceedings of the Korean Society of Computer Information Conference
/
2017.01a
/
pp.7-8
/
2017
각종 산업현장에서 작업자들의 안전 불감증으로 인해 발생하는 안전사고는 매년 꾸준히 증가하고 있는 추세이다. 본 논문에서 제안하는 스마트 작업자 안전벨트 및 행동인식 기반 위험경보 시스템은 이러한 상황을 방지하고자 작업자가 안전벨트의 훅을 제대로 걸지 않고 일을 진행하는 경우, 작업장 내에서 뛰어다니는 경우, 잘못된 자세로 일하는 경우를 시스템에서 인지하고 작업자, 관리자에게 알림을 줌으로서 작업자의 안전사고를 예방할 수 있도록 하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.57-58
/
2019
본 논문에서는 앞서 진행한 연구들과 딥러닝을 이용한 고소작업자 행동 모니터링 논문에 이어 작업자 위험 행동분류 시스템을 개선할 수 있는 연구 결과를 비교, 설명한다. 이번 연구에서는 작업자의 행동에 따른 고도계 센서의 데이터를 추가로 수집하여 작업자의 더 다양한 행동을 분류하고 위험 행동 패턴 분석을 위한 방향을 제시한다.
Kang, Sungwon;Lee, Kiseok;Yoo, Wi Sung;Shin, Yoonseok;Lee, Myungdo
Journal of the Korea Institute of Building Construction
/
v.23
no.1
/
pp.81-92
/
2023
According to the 2020 industrial accident reports of the Ministry of Employment and Labor, the number of fatal accidents in the construction industry over the past 5 years has been higher than in other industries. Of these more than 50% of fatal accidents are initially caused by fall accidents. The central government is intensively managing falling/jamming protection device and the use of personal protective equipment to eradicate the inappropriate factors disrupting safety at construction sites. In addition, although efforts have been made to prevent safety accidents with the proposal of the Special Act on Construction Safety, fatalities on construction sites are constantly occurring. Therefore, this study developed a model that automatically detects the wearing state of the worker's safety helmet and belt using computer vision technology. In considerations of conditions occurring at construction sites, we suggest an optimization method, which has been verified in terms of the accuracy and operation speed of the proposed model. As a result, it is possible to improve the efficiency of inspection and patrol by construction site managers, which is expected to contribute to reinforcing competency of safety management.
Journal of the Korea Institute of Building Construction
/
v.8
no.2
/
pp.131-136
/
2008
Safety management is the most important factor in the construction industry. If the construction company don't control the risk, it causes the accident which give the company fatal loss. According to the Korea industrial safety analysis reports, the 25.72% of the disasters are from the construction industry, and the 13.6% construction disasters are caused by not properly using the safety gears. Therefore, this study is to investigate the Wearing Safety Gear by Occupational Classification and the Satisfaction in the Construction Field. The results are ; Carpenters are dissatisfied with the safety shoes and belt, re-bar workers are dissatisfied with the safety helmet and shoes, Concrete workers are dissatisfied with the safety helmet and goggles.
Background: Due to an increasing number of workers aged 50 years and above, the number of those employed is also on the rise, and those workers aged 50 and over has exceeded 50% of the total fatal occupational injuries. Therefore, it is necessary to implement the selection and concentration by identifying the characteristics of high-risk groups necessary for an effective prevention against and reduction of fatal occupational injuries. Methods: This study analyzed the characteristics of high-risk groups and the occupational injury fatality rate per 10,000 workers among the workers aged 50 and over through a multi-dimensional analysis by sex, employment status of workers, industry and occupation by targeting 4,079 persons who died in fatal occupational injuries from January 2007 to December 12. Results: The share of the workers aged 50 years and above is increasing every year in the total fatal occupational injuries occurrence, and the high-risk groups include 'male workers' by sex, 'daily workers' by worker's status, 'craft and related-trades workers' by occupation, and 'mining' by industry. Conclusion: The most frequent causal objects of fatal occupational injuries of the workers aged 50 years and above are found out to be 'installment and dismantlement of temporary equipment and material on work platforms including scaffold' in the construction industry and 'mobile crane, conveyor belt and fork lifts' in the manufacturing industry.
Jeon, So Yeon;Park, Jong Hwa;Youn, Sang Byung;Kim, Young Soo;Lee, Yong Sung;Jeon, Ji Hye
Smart Media Journal
/
v.9
no.3
/
pp.25-30
/
2020
The purpose of this paper is to implement a deep learning-based real-time video analysis algorithm that monitors safety of workers in industrial facilities. The worker's clothes were divided into six classes according to whether workers are wearing a helmet, safety vest, and safety belt, and a total of 5,307 images were used as learning data. The experiment was performed by comparing the mAP when weight was applied according to the number of learning iterations for 645 images, using YOLO v4. It was confirmed that the mAP was the highest with 60.13% when the number of learning iterations was 6,000, and the AP with the most test sets was the highest. In the future, we plan to improve accuracy and speed by optimizing datasets and object detection model.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.1
/
pp.85-94
/
2022
Recently, consumers who prefer contactless consumption are increasing due to pandemic trends such as Corona 19. This is the driving force for developing the last mile-based logistics ecosystem centered on the online e-commerce market. Lastmile led to the continued development of the logistics industry, but increased the amount of cargo in urban area, and caused social problems such as overcrowding of logistics. The courier service in the logistics base area utilizes the process of visiting the delivery site directly because the courier must precede the loading work of the cargo in the truck for the delivery of the ordered product. Currently, it's carried out as automated logistics equipment such as conveyor belt in unloading or classification stage, but the automation system isn't applied, so the work efficiency is decreasing and the intensity of the courier worker's labor is increased. In particular, small-scale courier workers belonging to the sub-terminal unload at night at underdeveloped facilities outside the city center. Therefore, the productivity of the work is lowered and the risk of safety accidents is exposed, so robot-based loading technology is needed. In this paper, we have derived the top-level concept and requirements of robot-based loading system to increase the flexibility of logistics processing and to ensure the safety of courier drivers. We defined algorithms and motion concepts to increase the cargo loading efficiency of logistics sub-terminals through the requirements of end effector technology, which is important among concepts. Finally, the control technique was proposed to determine and position the load for design input development of the automatic conveyor system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.