• 제목/요약/키워드: work-life table

검색결과 32건 처리시간 0.018초

Factors Influencing the Preference for German farm Tourism: A Path Model Approach

  • Sidali, Katia Laura;Spiller, A.
    • 마케팅과학연구
    • /
    • 제18권4호
    • /
    • pp.33-59
    • /
    • 2008
  • This paper aims to analyse the preference for German farm tourism among the German population. For this reason, we conducted an empirical study in Germany during summer 2007 and we applieda structural equation model based on partial leasts quares(PLS) to analyse the data. In the following chapters we will introduce the literature review and our conceptual frame work. We will then outline the procedures we adopted and the results of the empirical analysis. In the final part so me conclusions will be presented and a discussion will follow in order to draw the future directions of our research. According to our hypotheses, the possibility that agri-tourism enters in the evoked set of an individual is higher: H1: The higher the information degree about it. H2: The lower the influence of the social stimuli. H3: The higher the physical exposure to it (experience). H4: The higher the wellness image of agri-tourism. H5: The higher the traditional image of agri-tourism. H6: The higher the exciting image of agri-tourism. H7: The higher the perceived value for money. Our further hypotheses affirm that the possibility that agri-tourism enters in the evoked set of an individual is higher: H8: The lower the perceived risk. H9: The higher the motive to enjoy a holiday in the nature. H10: The higher the motive to enjoy a sport holiday. H11: The lower the motive to have an organized holiday. H12: The lower the motive to have a holiday abroad. H13: The lower the motive of action and night life. H14: The higher the motive to spend a holiday with the family. H15: The lower the motive to spend a city holiday. Finally, our model has some socio-demographics data. As we mentioned before, German agri-tourism has traditionally been the travel destination of large-size families, with low-to-middle income. For that reason, our final hypothesises are the following: the possibility that agri-tourism enters in the evoked-set of an individual is higher: H16: The higher the number of family members. H17: The lower the family income. Since in this study we use a path model with a PLS approach, we are able to state some interrelations among the exogenous latent variables: H18: The motive of sport holiday has a positive influence towards nature motives. H19: The physical exposition to agri-tourism has a positive influence toward information. H20: The motive of family holiday has a negative influence toward the motive of action and night life. H21: Social stimuli have a positive influence towards individuals risk perceptions. H22: Social stimuli have negative influence towards experience. Data for this study were gathered via administrated questionnaires during the summer 2007 within the frame of an academic "marketing research" course. The corresponding t-values are assessed using the bootstrapping method with 500 re-samples. In our model 61% of the degree of appreciation of German agri-tourism (evoked set) is explained by five independent variables: value for money ($0.335^{{\ast}{\ast}{\ast}}$) (H7) experience ($0.267^{{\ast}{\ast}}$) (H3), exciting image ($0.204^{\ast}$) (H6) organisation ($-0.162^{\ast}$) (H11) and holiday abroad ($-0.156^{\ast}$) (H12). The variance explained ($R^2$) for the other endogenous variables are the following: nature 24.3%, information 14.1%, action holiday 13.8%, risk perception 5.8% and experience 2.4%. An overview can be inferred from table 5. The results also allow us to test each of the proposed hypotheses. With exception of organization and abroad, none of the others travel style factors (H9 to H15) seem to have any significant impact towards evoked set which leads to the rejection of the respective hypotheses. As expected, social stimuli have a significant influence on individuals' risk perception (H21 accepted), however neither the former nor the latter have a valuable impact on evoked set (rejection of H2 and H8). Besides, since the influence of social stimuli towards experience is not significant, also H22 has to be rejected. Experience influences information (H19 accepted) but the latter does not affect significantly the evoked set (H1 rejected). Both H4 as well as H5, referring respectively to the perceived images of German agri-tourism as a wellness destination and the traditional image of the German farm tourism have to be rejected. Finally, none of the demographic data included in the model explains significantly the variance of the factor evoked set. Therefore neither H16 nor H17 has been accepted. As far as the interrelation between sport and nature (H18) and family and action (H20) are concerned, the stated relationship among these variables has been statistically confirmed. Our path model based on partial least squares shows the factors influencing the preference for farm tourism in Germany. Among others value for money and experience are the most significant ones. Practical implications are discussed.

  • PDF

단일 카테고리 문서의 다중 카테고리 자동확장 방법론 (A Methodology for Automatic Multi-Categorization of Single-Categorized Documents)

  • 홍진성;김남규;이상원
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.77-92
    • /
    • 2014
  • 텍스트에 대한 사용자의 접근성을 향상시키기 위해, 이들 문서는 정해진 기준에 따라 카테고리로 분류되어 제공되고 있다. 과거에는 카테고리 분류 작업이 수작업으로 수행되었지만, 문서 작성자에게 분류를 맡기는 경우 분류 정확성을 보장할 수 없고 관리자가 모든 분류를 담당하는 경우 많은 시간과 비용이 소요된다는 어려움이 있었다. 이러한 한계를 극복하기 위해 카테고리를 자동으로 식별할 수 있는 문서 분류 기법에 대한 연구가 활발하게 수행되었다. 하지만 대부분의 문서 분류 기법은 각 문서가 하나의 카테고리에만 속하는 경우를 가정하고 있기 때문에, 하나의 문서가 다양한 주제를 갖는 실제 상황과 부합하지 않는다는 한계를 갖는다. 이를 보완하기 위해 최근 문서의 다중 카테고리 식별을 위한 연구가 일부 수행되었으나, 이들 연구는 대부분 이미 다중 카테고리가 부여되어 있는 문서에 대한 학습을 통해 분류 규칙을 생성하므로 단일 카테고리만 부여되어 있는 기존 문서의 다중 카테고리 식별에는 적용할 수 없다는 제약을 갖는다. 따라서 본 연구에서는 이러한 제약을 극복하기 위해, 카테고리, 토픽, 문서간 관계 분석을 통해 단일 카테고리를 갖는 문서로부터 추가 주제를 발굴하여 이를 다중 카테고리로 자동 확장시킬 수 있는 방법론을 제안하였다. 실험 결과 원 카테고리가 식별된 총 24,000건의 문서 중 23,089건에 대해 카테고리를 확장시킬 수 있었다. 또한 정확도 분석에서 카테고리의 특성에 따라 카테고리 분류 정확도가 상이하게 나타나는 현상을 발견하였다. 본 연구는 단일 카테고리로 분류된 문서에 대해 다중 카테고리를 추가로 식별하여 부여함으로써, 규칙 학습 과정에서 다중 카테고리가 부여된 문서를 필요로 하는 기존 다중 카테고리 문서 분류 알고리즘의 활용성을 매우 향상시킬 수 있을 것으로 기대한다.