• Title/Summary/Keyword: work situations

Search Result 593, Processing Time 0.036 seconds

The Aspects of Change of Sijo (시조의 변이 양상)

  • Kang Myeoung-Hye
    • Sijohaknonchong
    • /
    • v.24
    • /
    • pp.5-46
    • /
    • 2006
  • Korean verse has flexibly changed its form and contents according to the historical background of the times. This fact arouses reader sympathy because it has reflected ideas, historical aspects and realities of the times. However, korean verse has kept its own characteristics in some ways, allowing it to exist today. It holds its form as 3 verses of three by three or four meter and three letters of the last of three verses. It makes every different version which has specific aspects of each times in the same 'sijo' area. 'Sijo' in Korean poems, is the first form that has been changed from formal to private functionally. As a result of that common verses in the Goryeo to Joseon eras were going with the stream of the times. Verse was the plate for justice so that there was no double meaning, symbols, or technical sentences. It had to show the idea of Myungchundo Jwonginryun. The theme was commonly fitted within certain areas. such as blessings, fidelity, devotion, etc. Around the end of the Joseon era, there was activation of private verses - a form of sijo with no restrictions on the length of the first two verses. Some ideas had been changed because Sarimpa gained power, domestic conflict, and the introduction of practical science. These things had an effect on the form of Sijo. After all, it shows the ideas of collapsing feudalism, resistance of confucian ideas, equality of the sexes, and opposition to the group who rule the government. Thus Sasul Sijo seems to have the tendency of resistance to reality. It was a specialty of realism poetry It explained our life in detail and reflected real life by being an intermediary of realism. This met and represented the demand of a reader's expectations. After 1905, there was new form of sijo that is very different, in form and content, from the previous versions. It was even different in areas of what people accepted. They started to think sijo was not the form of lyrical verse that is once was. It became a 'record of reading'. The form changed to 'hung or huhung' that satirized the times and the ending of a word in the last verse. Although this form could deliver the tension in statement, it was too iu from the original form. Therefore, it didn't last long, and its position got smaller because of the free verse that had western influence and was emerging in the times. In the middle of 1920, there was a movement of Sijo revival. It was lead by Choinamsun. He wrote poems and Sijo which were effected by western ideas in his early works. Although he worked with that, he took the lead in the movement of Sijo revival. He published the collection of Sijo $\ulcorner$Baekpalbunnwoi$\lrcorner$ that has one major theme-patriotic sentiment. He thought an ancient poem was a part of racial characteristics so that he expressed the main theme which represented the times and situations of his era. Modern Sijo is difficult. Sijo has to have modern and Korean verse characteristics at the same time. If it considers a modern aspect too much, it could not be distinguished from sijo and free verse. If it overly leans toward Sijo. it would seem to be too conservative which it then could be said to have no real charm of a poem. In spite of these problems, it is written constantly, because it has its own specialty. It has been focused on some works because they reflect awareness of modern times, the democratic idea, and realism. Overall, the authors of Modern Sijo express various themes by using different forms. The more what we can guess in this work, Sijo will exist permanently because of its flexibility. Furthermore, one special characteristic-flexibility of the korean verse will make it last forever and it will be a genre in Korean poetry.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

ON THE EFFECTS CHLORINITIES UPON GROWTH OF EARLIER LARVAE AND POST-LARVA OF A FRESH WATER PRAWN, MACROBRACHIUM ROSENBERGI(DE MAN) (담수산새우 Macrobrachium rosenbergi (de Man)의 초기유생 및 Post-larva.의 성장에 미치는 염분량에 관하여)

  • KWON Chin Soo;UNO Yutaka;OGASAWARA Yohismitsu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.2
    • /
    • pp.97-114
    • /
    • 1977
  • The fresh water prawn, Macrobrachium rosenbergi(de Man) is a very common species in Indopacific region, which inhaits both fresh and brackish water in low land area, most of rivers and especially aboundant in the lower reaches which are influenced by sea water. It is one of the largest and commercial species of genus Macrobrachium, which is commonly larger than $18\~21cm$ in body length, from the basis of eye-stalked to the distal of telson. As a part of the researches in order to investigate the possibilities on transplantation and propagation of this species, this work dealt with the problems on the effects of chlorinities upon zoeal larvae and post-larvae 1). metamorphosis rate and optimum chlorinity for metamorphosis to post-larve, 2). tolerance and comparative survival rate on various chlorinties, from fresh water to sea water $(19.38\%_{\circ}\;Cl)$, which reared for six days upon each stage of zoeal larvae, 3). accomodation rate on chlonities which reared for twelve days after transmigration into variant chlorinities of the range from $3.68\%_{\circ}$ Cl to $1.53\%_{\circ}$ Cl in the way of rearing of the range from $3.82\%_{\circ}$ Cl to $11.05\%_{\circ}$ upon each stage of zoea, 4). tolerance on both of fresh and sea water upon zoeal larva and post-larva under the condition of $28^{\circ}C{\pm}1$ in temperature and feeding on Artenia salina nauplii, 5). relationship between various chlorinities and grwth of post-larvae under the condition of $28^{\circ}C$ in tmperature and feeding on meat of clam. Thus these investigations were performed in order to grope for a comfortable method on seedmass production. Up to the present, the study on the effects of chlorinity upon earlier zoeal larvae and post-larvae of Macrobrachium species has been scarcely performed by workers with the exception of Lewis(1961) and Ling (1962,, 1967), even so their works were not so detailed. On the other hand, larvae of several species of this genus were reared at the water which mixed sea water so as to carry out complete metamorphosis to post-larva by workers in order to investigate on earlier 1 arval and earlier post-larval development, such as Macrobrachium lamerrei (Rajyalakshmi, 1961), M. rosenbergi and M. nipponense (Uno and Kwoa, 1969; Kwon and Uno, 1969), M. acanthurs (Choudhury, 1970; Dobkin, 1971), M. carcinus(Choudhury, 1970), M. formosense(Shokita, 1970), M. olfersii (Duggei et al., 1975), M. novaehallandiae (Greenwood et al., 1976), M. japonicum (Kwon, 1974) and M. lar (Shokita, personal communication), and there fore it is regarded that chlorinity is, generally, one of absolute factors to rear zoeal larvae of brackish species of Macrobrachium genus. Synthetic results on this work is summarized as the follwings: 1) Zoeal larvae required different chlorinities to grow according to each stage, and generally, it is regarded that optimum range of living and growing is from $7.63\%_{\circ}Cl\to\;7.63\%_{\circ}Cl$, and while differences of metamorphsis rate, from first zoea to post-larva, is rarely found in this range, and however it occurs apparently in both of situation at $7.63\%_{\circ}Cl$ below and $16.63\%_{\circ}Cl$ above and moreover, metamorphosis rate is delayed somewhat in case of lower chlorinity as compared with high chlorinity in these situations. 2) Accomodation in each chlorinity on the range, from fresh water to sea water, is different according to larval stages and while the best of it is, generally, on the range from $14.24\%_{\circ}Cl$ to $8.28\%_{\circ}Cl$ and favorite chlorinity of zoea have a tendency to remove from high chlorinity to lower chlorinity in order to advance larval age throughout all zoeal stages, setting a conversional stage for eighta zoea stage. 3) Optimum chlorinity of living and growth upon postlarvae is on the range of $4.25\%_{\circ}Cl$ below, and in proportion as approach to fresh water, growth rate is increased. 4) Post-large are able to live better in fresh water in comparison with zoeal larvae, which are only able to live within fifteen hours, and by contraries, post-larvae are merely able to live for one day as compared with ?미 larvar, which are able to live for six days more in sea water $19.38\%_{\circ}Cl\;above$. 5) Also, in case of transmigration into higher and lower chlorinities in the way of rearing in the initial chlorinities $ 3.82\%_{\circ}Cl,\;7.14%_{\circ}Cl\;and\;11.05%_{\circ}Cl$, accoodation rate is a follow: accomodation capacity in ease of removing into higher chlorinities from lower chlorinities is increased in proportion as earlier stages, setting a conversional stage for eighth zoea stage, and by contraries, in case of advanced stages from eighth zoea it is incraesed in proportion as approach to post-larva stage in the case of transmigration into lower chlorinity from higher chlorinity. On the other hand, it is interesting that in case of reciprocal transmigration between two different chlorinitiess, each survival rate is different, and in this case, also, its accomodation in each zoea stage has a tendency to vary according to larval stages as described above, setting a conversional stage for eighth zoea stage. 6) It is likely that expension of radish pigments on body surface is directly proportional to chlorinity during the period of zoea rearing, and therefore it seems like all body surfacts of zoea larvae be radish coloured in case of higher chlorinity. 7) By the differences that each zoeal larvae, postlarvae, juvaniles and adult prawn are required different chlorinity for inhabiting in each, it is regarded that this species migrats from up steam to near the estuary of the river which the prawns inhabits commonly in natural field for spawning and growth migration. 8) It had better maintainning chlorinities according to zoeal stage for a comfortable method on seed-mass production that earlier larva stages than eighth zoea are maintained on the range from $8\%_{\circ}Cl\;to\;12\%_{\circ}Cl$ to rear, and later larva stages than eighth zoea, by contraries, are gradually regula ted-to love chlorininity of the range from $7\%_{\circ}Cl\;to\;4\%_{\circ}Cl$ according to advance for post-larva stage.

  • PDF