• Title/Summary/Keyword: work hardening rate

Search Result 77, Processing Time 0.02 seconds

Plane-strain bending based on ideal flow theory (이상 유동 이론에서의 평면 변형 벤딩)

  • Alexandrov Sergei;Lee W.;Chung K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.233-236
    • /
    • 2004
  • The major objective of this paper is to clarify the effect of constitutive laws on bulk forming design based on the ideal flow theory. The latter theory is in general applicable for perfectly/plastic materials. However, its kinematics equations constitute a closed-form system, which are valid for any incompressible materials, therefore enabling us to extend design solutions based on the perfectly/plastic constitutive law to more realistic laws with rate sensitive hardening behavior. In the present paper, several constitutive laws commonly accepted for the modeling of cold and hot metal forming processes are considered and the effect of these laws on one particular plane-strain design is demonstrated. The closed form solution obtained describes a non-trivial nonsteady ideal process. The design solutions based on the ideal flow theory are not unique. To achieve the uniqueness, the criterion that the plastic work required to deform the initial shape of a given class of shapes into a prescribed final shape attains its minimum is adopted. Comparison with a non-ideal process is also made.

  • PDF

Effect of Strain Rate on Plastic Deformation Behavior of Y-CSZ Single Crystal

  • Cheong, Deock-Soo;Kim, Chang-Sam
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Yttria stabilized zirconia (Y-CSZ) single crystals show plastic deformation at high temperatures by activating dislocations. The effect of strain rate on the plastic behavior of this crystal was studied. As increasing strain rate from $\varepsilon=1.04\times10^{-5} sec^{-1}$ to $2.08\times10^{-5} sec^{-1}$ the yield drop was suppressed and resulted in higher Young's modulus and yield stress. Dislocation structures of the strained crystals were analyzed using a transmission electron microscope to elucidate the plastic behavior of these crystals. In the early stage of plastic deformation, dislocation dipoles and prismatic dislocation loops were formed in both samples. However, dislocation density was increased by increasing strain rate. Strong sessile dislocations were observed in the sample with higher strain rate, which may cause the higher work hardening.

Quality Assessment by Analysis of Yoke Caulking Process Considering Strain Rate Sensitivity (변형률속도 민감성을 고려한 요크 코킹공정의 해석에 의한 품질 평가)

  • 박문식;강경모;한덕수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.37-46
    • /
    • 2003
  • This paper is to predict quality deterioration resulting from a caulking process of yoke which is a part of automotive steering system. The caluking is a plastic deformation process involving such as impact of high speed tool, contacts between part and fixtures and strain rate sensitivity of the part material. Elaborate application of finite element method is neccesary to calculate changes of part dimensions because they fall into a level of tolerances. Simple work hardening and strain rate sensitive model is proposed fur the material and applied for the simulation by using Abaqus which is able to cater for elastoplastic rate sensitive material and contacts. Numerical results of test models that represent tensile bar and tensile plate are compared with material data inputs. Dimensional changes for the yoke are calculated from simulations and compared to the mesurements and they show good agreement. The method presented here with the material model proved to be valuable to assess quality deterioration for similar metal forming processes.

The Evolution of Dynamically Recrystallized Microstructure for SCM 440 (SCM 440 강재의 동적 재결정 조직 변화에 관한 연구)

  • 한형기;유연철
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • The high temperature deformation behavior of SCM 440 can be characterized by the hot torsion test in the temperature ranges of $900^{\circ}C$~$1100^{\circ}C$ and strain rate ranges of 0.05/sec~5/sec. The aim of this paper is to establish the quantitative equation of the volume fraction of dynamic recrystallization (DRX) as a function of processing variables, such as strain rate ($\varepsilon$), temperature (T), and strain ('$\varepsilon$). During hot deformation, the evolution of microstructure could be analyzed from work hardening rate ($\theta$). For the exact prediction of dynamic softening mechanism the critical strain ($\varepsilon_c$), the strain for maximum softening rate ($\varepsilon^*$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A, respectively. The transformation-effective strain-temperature curve for DRX could be composed. It was found that the calculated results were agreed with the experimental data for the steel at any deformation conditions.

  • PDF

UBET Analysis of Combined Forging of Non-Axisymmetric Shapes With Inclined Protrusion (경사진 돌출부가 있는 비축대칭 복합단조의 상계요소해석)

  • 윤정호;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 1990
  • The study is concerned with the analysis of combined forging of non-axisymmetric shapes with inclined protrusions by UBET technique. Work hardening is considered for the given range of strain rate during the forging process. A complex shape with inclined cavities is analyzed by subdividing the workpiece into finite UBET elements for which simple velocity fields are applicable. An experimental set-up was designed and manufactured for the experiment, and experiments are carried out with lead billets. The devised set-up can be used for closed-die forging of complex shapes with protrusions in which the dies can be separated automatically for easy removal of the forged products. Based on the derived kinematically admissible velocity fields for corresponding UBET elements, general computer programs have been developed. Since the energy dissipation rate for each elemental region is provided by subprograms (Subroutine or Function), the developed program can be applied to the forging problems of various shapes. The present study has shown that the method developed can be effectively applied to forging of non-axisymmetric shapes with complicated protrusions.

Quasi-Static and Dynamic Loading Responses of Ti-6Al-4V Titanium Alloy: Experiments and Constitutive Modeling

  • Suh, Yeong-Sung;Akhtar S. Khan
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.191-194
    • /
    • 2003
  • The results from a systematic study of the response of a Ti-6Al-4V alloy under quasi-static and dynamic loading at different strain rates and temperatures are presented. It has been shown that the work-hardening rate decreased as the strain rate and the strain increased. The correlations and predictions using modified KHL (Khan-Huang-Liang) viscoplastic constitutive model are compared with those from JC (Johnson-Cook) model and experimental observations. Overall, KHL model correlations and predictions compared much more favorably than the corresponding JC model predictions and correlations.

  • PDF

Effect of SiC Particle Size on Hot Workability of AA2024/$SiC_P$ Composites (AA2024/$SiC_P$ 복합재료의 열간 가공성에 미치는 강화상 크기의 영향)

  • 고병철;홍흥기;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.81-84
    • /
    • 1997
  • The hot deformation behavior of SiCp/AA2024 composites reinforced with different sizes of SiCp reinforcements (1, 8, 15, 36, and 44${\mu}{\textrm}{m}$) was investigated by hot torsion tests. The hot restoration of the composites depending on the SiCp reinforcements particle size was studied from the effective stress - strain curves. Dynamic recrystallization (DRX) was occurred in the SiCp/AA2024 composites during the hot deformation at 320 - 43$0^{\circ}C$ under a strain rate of 1.0/sec. Also, the critical strain for DRX decreased with decreasing the reinforcement size of SiCp from 44 to 8${\mu}{\textrm}{m}$. The composite reinforced with SiCp of 8${\mu}{\textrm}{m}$ showed the highest flow stress (265 MPa) and the work hardening rate at 32$0^{\circ}C$ under a strain rate of 1.0/sec.

  • PDF

2D continuum viscodamage-embedded discontinuity model with second order mid-point scheme

  • Do, Xuan Nam;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.669-690
    • /
    • 2018
  • This paper deals with numerical modeling of dynamic failure phenomena in rate-sensitive brittle and/or ductile materials. To this end, a two-dimensional continuum viscodamage-embedded discontinuity model, which is based on our previous work (see Do et al. 2017), is developed. More specifically, the pre-peak nonlinear and rate-sensitive hardening response of the material behavior, representing the fracture-process zone creation, is described by a rate-dependent continuum damage model. Meanwhile, an embedded displacement discontinuity model is used to formulate the post-peak response, involving the macro-crack creation accompanied by exponential softening. The numerical implementation in the context of the finite element method exploiting the second-order mid-point scheme is discussed in detail. In order to show the performance of the model several numerical examples are included.

Effect of C/Ti Atom Ratio on the Deformation Behavior of TiCχ Grown by FZ Method at High Temperature

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.373-378
    • /
    • 2013
  • In order to clarify the effect of C/Ti atom ratios(${\chi}$) on the deformation behavior of $TiC_{\chi}$ at high temperature, single crystals having a wide range of ${\chi}$, from 0.56 to 0.96, were deformed by compression test in a temperature range of 1183~2273 K and in a strain rate range of $1.9{\times}10^{-4}{\sim}5.9{\times}10^{-3}s^{-1}$. Before testing, $TiC_{\chi}$ single crystals were grown by the FZ method in a He atmosphere of 0.3MPa. The concentrations of combined carbon were determined by chemical analysis and the lattice parameters by the X-ray powder diffraction technique. It was found that the high temperature deformation behavior observed is the ${\chi}$-less dependent type, including the work softening phenomenon, the critical resolved shear stress, the transition temperature where the deformation mechanism changes, the stress exponent of strain rate and activation energy for deformation. The shape of stress-strain curves of $TiC_{0.96}$, $TiC_{0.85}$ and $TiC_{0.56}$ is seen to be less dependent on ${\chi}$, the work hardening rate after the softening is slightly higher in $TiC_{0.96}$ than in $TiC_{0.85}$ and $TiC_{0.56}$. As ${\chi}$ decreases the work softening becomes less evident and the transition temperature where the work softening disappears, shifts to a lower temperature. The ${\tau}_c$ decreases monotonously with decreasing ${\chi}$ in a range of ${\chi}$ from 0.86 to 0.96. The transition temperature where the deformation mechanism changes shifts to a lower temperature as ${\chi}$ decreases. The activation energy for deformation in the low temperature region also decreased monotonously as ${\chi}$ decreased. The deformation in this temperature region is thought to be governed by the Peierls mechanism.

Analysis of the Strength Property for TiC-Mo Composites at High Temperature

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.201-206
    • /
    • 2014
  • TiC-21 mol% Mo solid solution (${\delta}$-phase) and TiC-99 mol% Mo solid solution (${\beta}$-phase), and TiC-(80~90) mol% Mo hypo-eutectic composite were deformed by compression in a temperature range from room to 2300 K and in a strain rate range from $4.9{\times}10^{-5}$ to $6.9{\times}10^{-3}/s$. The deformation behaviors of the composites were analyzed from the strengths of the ${\delta}$- and ${\beta}$-phases. It was found that the high strength of the eutectic composite is due primarily to solution hardening of TiC by Mo, and that the ${\delta}$-phase undergoes an appreciable plastic deformation at and above 1420 K even at 0.2% plastic strain of the composite. The yield strength of the three kinds of phase up to 1420 K is quantitatively explained by the rule of mixture, where internal stresses introduced by plastic deformation are taken into account. Above 1420 K, however, the calculated yield strength was considerably larger than the measured strength. The yield stress of ${\beta}$-phase was much larger than that of pure TiC. A good linear relationship was held between the yield stress and the plastic strain rate in a double-logarithmic plot. The deformation behavior in ${\delta}$-phase was different among the three temperature ranges tested, i.e., low, intermediate and high. At an intermediate temperature, no yield drop occurred, and from the beginning the work hardening level was high. At the tested temperature, a good linear relationship was held in the double logarithmic plot of the yield stress against the plastic strain rate. The strain rate dependence of the yield stress was very weak up to 1273 K in the hypo-eutectic composite, but it became stronger as the temperature rose.