• Title/Summary/Keyword: word sense disambiguation

Search Result 104, Processing Time 0.022 seconds

A Semantic-Based Feature Expansion Approach for Improving the Effectiveness of Text Categorization by Using WordNet (문서범주화 성능 향상을 위한 의미기반 자질확장에 관한 연구)

  • Chung, Eun-Kyung
    • Journal of the Korean Society for information Management
    • /
    • v.26 no.3
    • /
    • pp.261-278
    • /
    • 2009
  • Identifying optimal feature sets in Text Categorization(TC) is crucial in terms of improving the effectiveness. In this study, experiments on feature expansion were conducted using author provided keyword sets and article titles from typical scientific journal articles. The tool used for expanding feature sets is WordNet, a lexical database for English words. Given a data set and a lexical tool, this study presented that feature expansion with synonymous relationship was significantly effective on improving the results of TC. The experiment results pointed out that when expanding feature sets with synonyms using on classifier names, the effectiveness of TC was considerably improved regardless of word sense disambiguation.

Word sense disambiguation using modular neural networks (모듈화된 신경망을 이용한 한국어 중의성 해결 시스템)

  • Han, Tae-Sik;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.39-42
    • /
    • 1995
  • 문장 안에서 한 단어가 가지는 올바른 의미를 얻기 위해 모듈화된 신경망을 이용하였다. 앞부분에 놓인 신경망은 코호넨 신경망으로 사용자의 지도가 개입되지 않은 상태로 자율학습(Unsupervised learning)이 이루어지고, 뒤에 놓인 신경망은 앞에서 결과로 얻은 2차원의 자기 조직화 형상지도(Self-organizing feature map)를 바탕으로 역전파 신경망을 이용한 지도학습(Supervised learning)을 하게 하였다. 입력 자료는 구문분석된 문장의 조사 정보를 활용하여 입력 위치를 정해준 명사의 의미표지와 동사의 의미표지를 사용하였다. 중의성이 있는 단어를 가지는 문장은 중의성의 가지수 만큼 테스트 입력 자료가 되어 신경망을 통과하여 의미를 결정하도록 한다.

  • PDF

Word Sense Disambiguation in Query Translation of CLTR (교차 언어 문서 검색에서 질의어의 중의성 해소 방법)

  • Kang, In-Su;Lee, Jong-Hyeok;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.52-58
    • /
    • 1997
  • 정보 검색에서는 질의문과 문서를 동일한 표현으로 변환시켜 관련성을 비교하게 된다. 특히 질의문과 문서의 언어가 서로 다른 교차 언어 문서 검색 (CLTR : Cross-Language Text Retrieval) 에서 이러한 변환 과정은 언어 변환을 수반하게 된다. 교차 언어 문서 검색의 기존 연구에는 사전, 말뭉치, 기계 번역 등을 이용한 방법들이 있다. 일반적으로 언어간 변환에는 필연적으로 의미의 중의성이 발생되며 사전에 기반한 기존 연구에서는 다의어의 중의성 의미해소를 고려치 않고 있다. 본 연구에서는 질의어의 언어 변환시 한-일 대역어 사전 및 카도가와 시소러스 (각천(角川) 시소러스) 에 기반한 질의어 중의성 해소 방법과 공기하는 대역어를 갖는 문서에 가중치를 부여하는 방법을 제안한다. 제안된 방법들은 일본어 특허 문서를 대상으로 실험하였으며 5 %의 정확도 향상을 얻을 수 있었다.

  • PDF

An Alignment based technique for Text Translation between Traditional Chinese and Simplified Chinese

  • Sue J. Ker;Lin, Chun-Hsien
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.02a
    • /
    • pp.147-156
    • /
    • 2002
  • Aligned parallel corpora have proved very useful in many natural language processing tasks, including statistical machine translation and word sense disambiguation. In this paper, we describe an alignment technique for extracting transfer mapping from the parallel corpus. During building our system and data collection, we observe that there are three types of translation approaches can be used. We especially focuses on Traditional Chinese and Simplified Chinese text lexical translation and a method for extracting transfer mappings for machine translation.

  • PDF

Role of POS Tags in Word Sense Disambiguation : A comparison of English and Korean (의미 중의성 해소를 위한 품사의 역할 : 영어와 한국어 비교)

  • Cho, Jeong-Mi;Kim, Gil-Chang;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.407-411
    • /
    • 1998
  • 본 논문은 의미 중의성 해소에 있어서 품사 태깅의 중요성을 언급한 Wilks의 논문 [6]을 근거로 하여 한국어 의미 중의성 해소에 있어서의 품사 태깅의 역할을 살펴보고, 영어의 경우와 비교, 분석한다. 한국어 사전과 코퍼스를 각각 대상으로 품사 태깅을 이용한 의미 중의성 실험 결과, 한국어의 경우는 영어의 경우보다 품사를 이용한 의미 중의성 해소율이 떨어지는 결과를 보이고 있다.

  • PDF

Word Sense Disambiguation of Korean Verbs Using Weight Information from Context (가중치 정보를 이용한 한국어 동사의 의미 중의성 해소)

  • Lim, Soo-Jong;Park, Young-Ja;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.425-429
    • /
    • 1998
  • 본 논문은 문맥에서 추출한 가중치 정보를 이용한 한국어 동사의 의미 중의성 해소 모델을 제안한다. 중의성이 있는 단어가 쓰인 문장에서 그 단어의 의미 결정에 영향을 주는 단어들로 의미 결정자 벡터를 구성하고, 사전에서 그 단어의 의미 항목에 쓰인 단어들로 의미 항목 벡터를 구성한다. 목적 단어의 의미는 두 벡터간의 유사도 계산에 의해 결정된다. 벡터간의 유사도 계산은 사전에서 추출된 공기 관계와 목적 단어가 속한 문장에서 추출한 거리와 품사정보에 기반한 가중치 정보를 이용하여 이루어진다. 4개의 한국어 동사에 대해 내부실험과 외부실험을 하였다. 내부 실험은 84%의 정확률과 baseline을 기준으로 50%의 성능향상, 외부 실험은 75%의 정확률과 baseline을 기준으로 40 %의 성능향상을 보인다.

  • PDF

Word Sense Disambiguation for Coarse-grained Medical Corpus (의료 문서의 특성을 고려한 단어 모호성 해소 연구)

  • Song, Sa-Kwang;Jang, Jae-Won;Lim, Myung-Eun;Myaeng, Sung-Hyon;Park, Soo-Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.943-948
    • /
    • 2007
  • 진료 기록 문서(CDA)가 의사들에 의해 작성되기 때문에 많은 전문용어, 약어, 숫자, 기호 등을 포함하고 있다. 본 논문에서는 이러한 특성을 고려하여 문서 내에서 여러 의미로 해석될 수 있는 약어, 중의어 등의 단어 모호성을 해소하고자 의미적 등가 부류를 이용하여 모호성을 해소하였다. 특히 의료문서가 많은 비율의 숫자, 기호를 사용하고 있고 문서 내에서 많은 의미적 유의성을 포함하고 있기 때문에 이들을 불용어로 처리하지 않고 의미적 등가 부류에 포함시킴으로써 진료문서 특성을 반영하였다.

  • PDF

Word Sense Disambiguation Using of Cooccurrence Information Vectors (공기정보 벡터를 이용한 한국어 명사의 의미구분)

  • Shin, Sa-Im;Lee, Ju-Ho;Choi, Yong-Seok;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.472-478
    • /
    • 2001
  • 본 논문은 문맥의 공기정보를 사용한 한국어 명사의 의미구분에 관한 연구이다. 대상 명사에 대한 문맥의 지엽적인 단어분포는 명사의 의미구분을 위한 의미적 특성을 표현하는데 충분하지 못하다. 본 논문은 의미별로 수집한 문맥 정보를 기저 벡터화 하는 방법을 제안한다. 정보의 중요도 측정을 통하여 의미구분에 불필요한 문맥정보는 제거하고, 남아있는 문맥의 단어들은 변별력 강화를 위하여 상의어 정보로 바꾸어 기저벡터에 사용한다. 상의어 정보는 단어의 형태와 사전 정의문의 패턴을 통해 추출한다. 의미 벡터를 통한 의미구분에 실패하였을 경우엔 훈련데이터에서 가장 많이 나타난 의미로 정답을 제시한다. 실험을 위해 본 논문에서는 SENSEVAL 실험집합을 사용하였으며, 제시한 방법으로 공기정보의 가공 없이 그대로 실험한 방법과 비교하여 최고 42% 정도의 정확률 향상을 나타내었다.

  • PDF

Procedures and Problems in Compiling a Disambiguated Tagged Corpus (어휘의미분석 말뭉치 구축의 절차와 문제)

  • Shin, Chi-Hyon;Choi, Min-Woo;Kang, Beom-Mo
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.479-486
    • /
    • 2001
  • 동음이의어 간의 서로 다른 의미를 효율적으로 변별해 줄 수 있는 방법 중 하나로 어휘의미분석 말뭉치의 활용을 들 수 있다. 이는 품사 단위의 중의성을 해소해 줄 수 있는 형태소 분석 말뭉치를 기반으로, 이 단계에서 해결하지 못하는 어휘적인 중의성을 해결한 것으로, 보다 정밀한 언어학적 연구와 단어 의미의 중의성 해결(word sense disambiguation) 등 자연언어처리 기술 개발에 사용될 수 있는 중요한 언어 자원이다. 본 연구는 실제로 어휘의미분석 말뭉치를 구축하기 위한 기반 연구로서, 어휘의미분서 말뭉치의 설계와 구축 방법론상의 제반 사항을 살펴보고, 중의적 단어들의 분포적 특징과 단어의 중의성 해결 단계에서 발생할 수 있는 문제점을 지적하고, 아울러 그 해결 방법을 모색해 의는 것을 목적으로 한다.

  • PDF

word-sense Disambiguation based on Semantic Informations extracted from Definitions in Dictonary (사전 뜻말이에서 추출한 의미 정보에 기반한 의미 중의성 해결)

  • Hur, Jeong;Ock, Cheol-Young
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.269-276
    • /
    • 2000
  • 본 연구에서는 사전의 뜻말이에서 의미 정보를 추출하고, 이 의미 정보를 확률 통계적 방법에 적용하여 의미 중의성을 해결하는 모델을 제안한다. 사전의 뜻풀이말에 동형이의어를 포함하고 있는 표제어와 뜻풀이말을 구성하는 보통 명사, 형용사와 동사를 의미 정보로 추출한다. 비교적 중의성이 자주 발생하는 9개의 동형이의어 명사를 대상으로 실험하였다. 학습에 이용된 데이터로 정확률을 실험하는 내부 실험의 결과, 체언류(보통 명사)와 용언류(동사, 형용사)의 가중치를 0.9/0.1로 주는 것이 가장 정확률이 높았다. 외부 실험은 국어 정보베이스와 ETRI 코퍼스를 이용하여 1,796문장을 실험하였는데, 평균 79.73%의 정확률을 보였다.

  • PDF