Purpose Recently, as a new business marketing tool, short form content focused on fun and interest has been shared as hashtags. By extracting positive and negative keywords from media audiences through comment analysis of social media news, various stakeholders aim to quickly and easily grasp users' opinions on major news. Design/methodology/approach YouTube videos were searched using the YouTube Data API and the results were collected. Video comments were crawled and implemented as HTML elements, and the collection results were checked on the web page. The collected data consisted of video thumbnails, titles, contents, and comments. Comments were word tokenized with the R program, comparing positive and negative dictionaries, and then quantifying polarity. In addition, social network analysis was conducted using divided positive and negative comments, and the results of centrality analysis and visualization were confirmed. Findings Social media users' opinions on issue news were confirmed by analyzing and visualizing the centrality of keywords through social network analysis by dividing comments into positive and negative. As a result of the analysis, it was found that negative objective reviews had the highest effect on information usefulness. In this way, previous studies have been reaffirmed that online negative information has a strong effect on personal decision-making. Corporate marketers will analyze user comments on social network services (SNS) to detect negative opinions about products or corporate images, which will serve as an opportunity to satisfy customers' needs.
Journal of Wellbeing Management and Applied Psychology
/
v.6
no.4
/
pp.27-31
/
2023
Purpose: This study analyzed papers identified by entering the two keywords 'unification education' and 'university' during research from 2013 to 2022 in order to identify trends and key concepts in unification education research at domestic universities. Research design, data, and methodology: The study analyzed 224 papers, excluding those on primary, middle, and high school unification education, as well as unrelated and duplicate papers. The analysis included developing a co-occurrence network of keywords, utilizing topic modeling to categorize research types, and confirming visualizations such as word clouds and sociograms. Results: In the final analysis, the research identified 1,500 keywords, with notable ones like 'Korea,' 'education,' 'unification.' Centrality analysis, measuring influence through connected keywords, revealed that 'Korea,' 'education,' 'north,' and 'unification' held significant positions. Keywords with high centrality compared to their frequency included 'learning,' 'development,' 'training,' 'peace,' and 'language,' in that order. Conclusions: This study investigated trends and structures in university-level unification education by analyzing papers identified with the keywords 'unification education' and 'university.' The use of keyword network analysis aimed to elucidate patterns and structures in university-level unification education. The significance of the study lies in offering foundational data for future research directions in the field of unification education at universities.
According to increasing SNS users and developing smart devices like smart phone and tablet PC recently, many techniques to classify user emotions with social network information are researching briskly. The use emotion classification stands for distinguishing its emotion with text and images listed on his/her SNS. This paper suggests a method to classify user emotions through sampling a value of a representative figure on a trigonometrical function, a representative adjective on text, and a canny algorithm on images. The sampling representative adjective on text is selected as one of high frequency in the samplings and measured values of positive-negative by SentiWordNet. Figures sampled on images are selected as the representative in figures; triangle, quadrangle, and circle as well as classified user emotions by measuring pleasure-unpleased values as a type of figures and inclines. Finally, this is re-defined as x-y graph that represents pleasure-unpleased and positive-negative values with wheel of emotions by Plutchik. Also, we are anticipating for applying user-customized service through classifying user emotions on wheel of emotions by Plutchik that is redefined the representative adjectives and figures.
Social commerce is a kind of internet shopping mall in which consumers purchase the products with other consumers through mutual interactions including the development of SNS(social network service). Social commerce has expanded rapidly as a mainstream online shopping mall over the past five years driving consumers to purchase more fashion products providing the cheaper prices than open market internet shopping mall. The purpose of this study is to identify the important parameters of social commerce characteristics and consumer characteristics that affect repurchase intention and word-of-mouth intention. A 221 survey questionnaire was distributed to men in their 20's and 30's who live in Seoul metropolitan area. The data were analyzed utilizing Cronbach's ${\alpha}$, factor analysis, and regression analysis using the SPSS 18.0 program. The results revealed, first, that in terms of social commerce characteristics, three variables(website reputation, interactivity, and product scarcity) influenced repurchase intention. Among them, website reputation identified as the most important factor influencing repurchase intention and word-of-mouth intention. Second, with regard to consumer characteristics, interest and a tendency toward impulse buying affected the repurchase intention, and interest and internet shopping experience have influenced the word-of-mouth intention. Among three variables interest in social commerce identified as the key factor affecting both repurchase intention and word-of-mouth intention. The results of the study provide the practical implications and suggest the business strategies to enhance social commerce in the future by identifying the key social commerce characteristics and consumer characteristics that influence male consumers' buying behaviors.
Kim, Namgyu;Lee, Donghoon;Choi, Hochang;Wong, William Xiu Shun
The Journal of Korean Institute of Communications and Information Sciences
/
v.42
no.2
/
pp.471-492
/
2017
The demand and interest in big data analytics are increasing rapidly. The concepts around big data include not only existing structured data, but also various kinds of unstructured data such as text, images, videos, and logs. Among the various types of unstructured data, text data have gained particular attention because it is the most representative method to describe and deliver information. Text analysis is generally performed in the following order: document collection, parsing and filtering, structuring, frequency analysis, and similarity analysis. The results of the analysis can be displayed through word cloud, word network, topic modeling, document classification, and semantic analysis. Notably, there is an increasing demand to identify trending topics from the rapidly increasing text data generated through various social media. Thus, research on and applications of topic modeling have been actively carried out in various fields since topic modeling is able to extract the core topics from a huge amount of unstructured text documents and provide the document groups for each different topic. In this paper, we review the major techniques and research trends of text analysis. Further, we also introduce some cases of applications that solve the problems in various fields by using topic modeling.
Purpose: Topic modeling is a text mining technique that extracts concepts from textual data and uncovers semantic structures and potential knowledge frameworks within context. This study aimed to identify major keywords and network structures for each major topic to discern research trends in women's health nursing published in the Korean Journal of Women Health Nursing (KJWHN) using text network analysis and topic modeling. Methods: The study targeted papers with English abstracts among 373 articles published in KJWHN from January 2011 to December 2021. Text network analysis and topic modeling were employed, and the analysis consisted of five steps: (1) data collection, (2) word extraction and refinement, (3) extraction of keywords and creation of networks, (4) network centrality analysis and key topic selection, and (5) topic modeling. Results: Six major keywords, each corresponding to a topic, were extracted through topic modeling analysis: "gynecologic neoplasms," "menopausal health," "health behavior," "infertility," "women's health in transition," and "nursing education for women." Conclusion: The latent topics from the target studies primarily focused on the health of women across all age groups. Research related to women's health is evolving with changing times and warrants further progress in the future. Future research on women's health nursing should explore various topics that reflect changes in social trends, and research methods should be diversified accordingly.
Improving productivity of knowledge workers is an important issue in the 21st century referred as knowledge-based society. The core key word is knowledge sharing among constituents of an organization. The purpose of this study is to combine the social network position factors with attitude and behavior factors, and develop an integrated research model for the knowledge sharing among members of an organization. This study adopted the integrated theoretical framework based on social capital, self-efficacy, transactive memory, and knowledge sharing. Surveys were conducted to 42 organizational members from a department in a leading IT outsourcing company to empirically test the proposed research model. In order to validate the proposed research model, social network analysis tool, UCINET, a structural equation modeling tool, SmartPLS, were utilized. The empirical result showed that, first of all, organizational members' familiarity network position had significant influence on knowledge self-efficacy and transactive memory capability. Second, knowledge self-efficacy and transactive memory capability affected knowledge sharing intention. Third, knowledge sharing intention also had an impact on the job performance. However, organizational members' expertise network position had no significant influence on knowledge self-efficacy and transactive memory capability. This finding reveals the importance of the emotional approach rather than the rational approach in knowledge management. The theoretical and practical implications on the research findings were discussed along with limitations.
Journal of Institute of Control, Robotics and Systems
/
v.13
no.8
/
pp.726-734
/
2007
Generally, a mobile robot is moved by original input programs. However, it is very hard for a non-expert to change the program generating the moving path of a mobile robot, because he doesn't know almost the teaching command and operating method for driving the robot. Therefore, the teaching method with speech command for a handicapped person without hands or a non-expert without an expert knowledge to generate the path is required gradually. In this study, for easily teaching the moving path of the autonomous mobile robot, the autonomous mobile robot with the function of speech recognition is developed. The use of human voice as the teaching method provides more convenient user-interface for mobile robot. To implement the teaching function, the designed robot system is composed of three separated control modules, which are speech preprocessing module, DC servo motor control module, and main control module. In this study, we design and implement a speaker dependent isolated word recognition system for creating moving path of an autonomous mobile robot in the unknown environment. The system uses word-level Hidden Markov Models(HMM) for designated command vocabularies to control a mobile robot, and it has postprocessing by neural network according to the condition based on confidence score. As the spectral analysis method, we use a filter-bank analysis model to extract of features of the voice. The proposed word recognition system is tested using 33 Korean words for control of the mobile robot navigation, and we also evaluate the performance of navigation of a mobile robot using only voice command.
One of the biggest difficulties in the vocational training field is the dropout problem. A large number of students drop out during the training process, which hampers the waste of the state budget and the improvement of the youth employment rate. Previous studies have mainly analyzed the cause of dropouts. The purpose of this study is to propose a machine learning based model that predicts dropout in advance by using various information of learners. In particular, this study aimed to improve the accuracy of the prediction model by taking into consideration not only structured data but also unstructured data. Analysis of unstructured data was performed using Word2vec and Convolutional Neural Network(CNN), which are the most popular text analysis technologies. We could find that application of the proposed model to the actual data of a domestic vocational training institute improved the prediction accuracy by up to 20%. In addition, the support vector machine-based prediction model using both structured and unstructured data showed high prediction accuracy of the latter half of 90%.
International Journal of Advanced Culture Technology
/
v.12
no.1
/
pp.270-275
/
2024
Introduction. In this study, purpose is to analize the types of golf tourism, inbound or outbound, by using big data and see how movement of industry is being changed and what changes have been made during and after Covid-19 in golf industry. Method Using Textom, a big data analysis tool, "golf tourism" and "Covid-19" were selected as keywords, and search frequency information of Naver and Daum was collected for a year from 1 st January, 2023 to 31st December, 2023, and data preprocessing was conducted based on this. For the suitability of the study and more accurate data, data not related to "golf tourism" was removed through the refining process, and similar keywords were grouped into the same keyword to perform analysis. As a result of the word refining process, top 36 keywords with the highest relevance and search frequency were selected and applied to this study. The top 36 keywords derived through word purification were subjected to TF-IDF analysis, visualization analysis using Ucinet6 and NetDraw programs, network analysis between keywords, and cluster analysis between each keyword through Concor analysis. Results By using big data analysis, it was found out option of oversea golf tourism is affecting on inbound golf travel. "Golf", "Tourism", "Vietnam", "Thailand" showed high frequencies, which proves that oversea golf tour is now the re-coming trends.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.