• Title/Summary/Keyword: word context

Search Result 358, Processing Time 0.024 seconds

Comparison of Neural Network Techniques for Text Data Analysis

  • Kim, Munhee;Kang, Kee-Hoon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.231-238
    • /
    • 2020
  • Generally, sequential data refers to data having continuity. Text data, which is a representative type of unstructured data, is also sequential data in that it is necessary to know the meaning of the preceding word in order to know the meaning of the following word or context. So far, many techniques for analyzing sequential data such as text data have been proposed. In this paper, four methods of 1d-CNN, LSTM, BiLSTM, and C-LSTM are introduced, focusing on neural network techniques. In addition, by using this, IMDb movie review data was classified into two classes to compare the performance of the techniques in terms of accuracy and analysis time.

Context-sensitive Spelling Error Correction using Feed-Forward Neural Network (Feed-Forward Neural Network를 이용한 문맥의존 철자오류 교정)

  • Hwang, Hyunsun;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.124-128
    • /
    • 2015
  • 문맥의존 철자오류는 해당 단어만 봤을 때에는 오류가 아니지만 문맥상으로는 오류인 문제를 말한다. 이러한 문제를 해결하기 위해서는 문맥정보를 보아야 하지만, 형태소 분석 단계에서는 자세한 문맥 정보를 보기 어렵다. 본 논문에서는 형태소 분석 정보만을 이용한 철자오류 수정을 위한 문맥으로 사전훈련(pre-training)된 단어 표현(Word Embedding)를 사용하고, 기존의 기계학습 알고리즘보다 좋다고 알려진 딥 러닝(Deep Learning) 기술을 적용한 시스템을 제안한다. 실험결과, 기존의 기계학습 알고리즘인 Structural SVM보다 높은 F1-measure 91.61 ~ 98.05%의 성능을 보였다.

  • PDF

A Study on the Presidential Records of the Participatory Government : Focusing on the Records of Presidential Events (참여정부 대통령기록 연구 대통령 행사기록을 중심으로)

  • Yi, Kyoung Yong
    • The Korean Journal of Archival Studies
    • /
    • no.71
    • /
    • pp.131-167
    • /
    • 2022
  • This article analyzes the contents of the records surrounding the production process of the 'Word Record' produced by the Office of the Records Management Secretariat in relation to the presidential event among the 16th presidential records. Through this, it was suggested to properly understand the production context of the records of the President's events transferred to the Presidential Archives by the 16th President, and based on this, link and organize related records and actively utilize them.

Ontology-based Automated Metadata Generation Considering Semantic Ambiguity (의미 중의성을 고려한 온톨로지 기반 메타데이타의 자동 생성)

  • Choi, Jung-Hwa;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.986-998
    • /
    • 2006
  • There has been an increasing necessity of Semantic Web-based metadata that helps computers efficiently understand and manage an information increased with the growth of Internet. However, it seems inevitable to face some semantically ambiguous information when metadata is generated. Therefore, we need a solution to this problem. This paper proposes a new method for automated metadata generation with the help of a concept of class, in which some ambiguous words imbedded in information such as documents are semantically more related to others, by using probability model of consequent words. We considers ambiguities among defined concepts in ontology and uses the Hidden Markov Model to be aware of part of a named entity. First of all, we constrict a Markov Models a better understanding of the named entity of each class defined in ontology. Next, we generate the appropriate context from a text to understand the meaning of a semantically ambiguous word and solve the problem of ambiguities during generating metadata by searching the optimized the Markov Model corresponding to the sequence of words included in the context. We experiment with seven semantically ambiguous words that are extracted from computer science thesis. The experimental result demonstrates successful performance, the accuracy improved by about 18%, compared with SemTag, which has been known as an effective application for assigning a specific meaning to an ambiguous word based on its context.

A Study-on Context-Dependent Acoustic Models to Improve the Performance of the Korea Speech Recognition (한국어 음성인식 성능향상을 위한 문맥의존 음향모델에 관한 연구)

  • 황철준;오세진;김범국;정호열;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.9-15
    • /
    • 2001
  • In this paper we investigate context dependent acoustic models to improve the performance of the Korean speech recognition . The algorithm are using the Korean phonological rules and decision tree, By Successive State Splitting(SSS) algorithm the Hidden Merkov Netwwork(HM-Net) which is an efficient representation of phoneme-context-dependent HMMs, can be generated automatically SSS is powerful technique to design topologies of tied-state HMMs but it doesn't treat unknown contexts in the training phoneme contexts environment adequately In addition it has some problem in the procedure of the contextual domain. In this paper we adopt a new state-clustering algorithm of SSS, called Phonetic Decision Tree-based SSS (PDT-SSS) which includes contexts splits based on the Korean phonological rules. This method combines advantages of both the decision tree clustering and SSS, and can generated highly accurate HM-Net that can express any contexts To verify the effectiveness of the adopted methods. the experiments are carried out using KLE 452 word database and YNU 200 sentence database. Through the Korean phoneme word and sentence recognition experiments. we proved that the new state-clustering algorithm produce better phoneme, word and continuous speech recognition accuracy than the conventional HMMs.

  • PDF

Semantic Interference Effect;Contrasting the Lexical Competition with the Concept Competition Hypothesis (의미간섭효과;어휘경쟁가설 대 개념경쟁가설의 비교)

  • Koo, Min-Mo;Nam, Ki-Chun
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.74-77
    • /
    • 2007
  • In order to compare two hypotheses on the origin of semantic interference effect that has been offered in the psycholinguistic literature, we conducted two experiments using the picture-word interference paradigm. When participants named the pictures of the objects simultaneously presented with distractor words, they were required to use either native words (Experiment 1) or loanwords (Experiment 2). The pictures were paired with three kinds of distractor words that were identical, semantically related and neutral to the picture. Two observations were obtained from two experiments. Firstly, the naming times of the pictures were more fast in context of the identical distractors than in context of the neutral ones. Secondly, naming times were more slow in the presence of the semantically related distractors relative to the neutral ones. These findings support the claim that semantic interference is based on a lexical retrieval conflict.

  • PDF

A Customer Value Theory Approach to the Engagement with a Brand: The Case of KakaoTalk Plus in Korea

  • So-Hyun Lee;ji-eun Lee;Hee-Woong Kim
    • Asia pacific journal of information systems
    • /
    • v.28 no.1
    • /
    • pp.36-60
    • /
    • 2018
  • As an increasing number of people gained access to social network services (SNS), organizations started to use SNS as a channel for marketing and promotional purposes. The online advertising market has significant growth potential. Brand engagement is a key motive for online advertising, but how SNS users engage with brands, particularly in terms of the promotion of organizations, is poorly understood. This study uses customer value theory to examine brand engagement of users in terms of promoting companies in the context of Korean SNS marketing. This study identifies the antecedents of brand engagement based on customer value theory. Our findings show the significance of three factors of SNS marketing, namely, price discount, relationship support, and convenience, on brand engagement. We further show the consequences of brand engagement, namely, purchase decisions and word-of-mouth activities. These findings help advance customer value theory and offer practical insights into the use of information systems and marketing in the context of SNS.

Korean Isolated Word Recognition Using Modular Structured Neural Network (모듈구조 신경망을 이용한 한국어 단어 인식에 관한 연구)

  • 최환진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.11-14
    • /
    • 1991
  • 음소단위로 구성된 음소군들 각각에 대해 구성된 신경 회로망을 하나로 통합하는 모듈구조로 신경망을 이용하여 일반적인 예약 시스템에서 사용할 수 있는 어휘인 시간명, 월명, 지역명등 총 34 단어에 대한 인식 실험내용을 기술한다. 구문회로망(context net)를 이용하는 경우에 약 91.2%의 인식율을, 단순히 음소단위를 기반으로하여 인식할 경우에 약 72%의 인식율을 얻으므로써, 음소 단위 인식시스템의 경우에 보다 높은 인식율을 얻기 위해서는 상위 level의 처리가 수반되어야 함을 확인할 수 있었다.

  • PDF

The Detection and Correction of Context Dependent Errors of The Predicate using Noun Classes of Selectional Restrictions (선택 제약 명사의 의미 범주 정보를 이용한 용언의 문맥 의존 오류 검사 및 교정)

  • So, Gil-Ja;Kwon, Hyuk-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • Korean grammar checkers typically detect context-dependent errors by employing heuristic rules; these rules are formulated by language experts and consisted of lexical items. Such grammar checkers, unfortunately, show low recall which is detection ratio of errors in the document. In order to resolve this shortcoming, a new error-decision rule-generalization method that utilizes the existing KorLex thesaurus, the Korean version of Princeton WordNet, is proposed. The method extracts noun classes from KorLex and generalizes error-decision rules from them using the Tree Cut Model and information-theory-based MDL (minimum description length).

Speech Recognition Using MSVQ/TDRNN (MSVQ/TDRNN을 이용한 음성인식)

  • Kim, Sung-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.268-272
    • /
    • 2014
  • This paper presents a method for speech recognition using multi-section vector-quantization (MSVQ) and time-delay recurrent neural network (TDTNN). The MSVQ generates the codebook with normalized uniform sections of voice signal, and the TDRNN performs the speech recognition using the MSVQ codebook. The TDRNN is a time-delay recurrent neural network classifier with two different representations of dynamic context: the time-delayed input nodes represent local dynamic context, while the recursive nodes are able to represent long-term dynamic context of voice signal. The cepstral PLP coefficients were used as speech features. In the speech recognition experiments, the MSVQ/TDRNN speech recognizer shows 97.9 % word recognition rate for speaker independent recognition.